scholarly journals Rapid and Accurate Approach for Honeybee Pollen Analysis Using ED-XRF and FTIR Spectroscopy

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6024
Author(s):  
Agata Swiatly-Blaszkiewicz ◽  
Dagmara Pietkiewicz ◽  
Jan Matysiak ◽  
Barbara Czech-Szczapa ◽  
Katarzyna Cichocka ◽  
...  

Since honeybee pollen is considered a “perfectly complete food” and is characterized by many beneficial properties (anti-inflammatory, antioxidant, anti-bacterial, etc.), it has begun to be used for therapeutic purposes. Consequently, there is a high need to develop methods for controlling its composition. A thorough bee pollen analysis can be very informative regarding its safety for consumption, the variability of its composition, its biogeographical origin, or harvest date. Therefore, in this study, two reliable and non-destructive spectroscopy methods, i.e., ED-XRF and ATR–FTIR, are proposed as a fast approach to characterize bee pollen. The collected samples were derived from apiaries located in west-central Poland. Additionally, some commercially available samples were analyzed. The applied methodology was optimized and combined with sophisticated chemometric tools. Data derived from IR analyses were also subjected to two-dimensional correlation spectroscopy. The developed ED-XRF method allowed the reliable quantification of eight macro- and micro-nutrients, while organic components were characterized by IR spectroscopy. Principal component analysis, cluster analysis, and obtained synchronous and asynchronous maps allowed the study of component changes occurring dependently on the date and location of harvest. The proposed approach proved to be an excellent tool to monitor the variability of the inorganic and organic content of bee pollen.

2021 ◽  
Vol 11 (2) ◽  
pp. 621
Author(s):  
Silvana Alfei ◽  
Anna Maria Schito ◽  
Guendalina Zuccari

In the recent years, plastic-based shopping bags have become irregular and progressively replaced by compostable ones. To be marketed, these “new plastics” must possess suitable requirements verified by specific bodies, which grant the conformity mark, and the approved physicochemical properties are periodically verified. The fast, inexpensive, non-destructive, easy to use, and reproducible Fourier-Transform infrared (FTIR) spectroscopy is a technique routinely applied to perform analysis in various industrial sectors. To get reliable information from spectral data, chemometric methods, such as Principal Component Analysis (PCA), are commonly suggested. In this context, PCA was herein performed on 4, 5, and 21 × 3251 matrices, collecting the FTIR data from regular and irregular shopping bags, including three freshly extruded films from the Italian industry MecPlast, to predict their compliance with legislation. The results allowed us to unequivocally achieve such information and to classify the bags as suitable for containing fresh food in bulk or only for transport. A self-validated linear model was developed capable to estimate, by acquiring a single FTIR spectrum if, after the productive process, the content of renewable poly-lactic-acid (PLA) in a new produced film respect the expectations. Surprisingly, our findings established that among the grocery bags available on the market, irregular plastic-based shopping bags continue to survive.


Author(s):  
Anna Wójtowicz ◽  
Agata Mitura ◽  
Renata Wietecha-Posłuszny ◽  
Rafał Kurczab ◽  
Marcin Zawadzki

AbstractVitreous humor (VH) is an alternative biological matrix with a great advantage of longer availability for analysis due to the lack of many enzymes. The use of VH in forensic toxicology may have an added benefit, however, this application requires rapid, simple, non-destructive, and relatively portable analytical analysis methods. These requirements may be met by Fourier transform infrared spectroscopy technique (FT-IR) equipped with attenuated total reflection accessory (ATR). FT-IR spectra of vitreous humor samples, deposited on glass slides, were collected and subsequent chemometric data analysis by means of Hierarchical Cluster Analysis and Principal Component Analysis was conducted. Differences between animal and human VH samples and human VH samples stored for diverse periods of time were detected. A kinetic study of changes in the VH composition up to 2 weeks showed the distinction of FT-IR spectra collected on the 1st and 14th day of storage. In addition, data obtained for the most recent human vitreous humor samples—collected 3 and 2 years before the study, presented successful discrimination of all time points studied. The method introduced was unable to detect mephedrone addition to VH in the concentration of 10 µg/cm3. Graphic abstract


2021 ◽  
Vol 11 (10) ◽  
pp. 4675
Author(s):  
Youssef Elamine ◽  
Hamada Imtara ◽  
Maria Graça Miguel ◽  
Ofélia Anjos ◽  
Letícia M. Estevinho ◽  
...  

The emergence of multidrug-resistant bacteria has prompted the development of alternative therapies, including the use of natural products with antibacterial properties. The antibacterial properties of Zantaz honey produced in the Moroccan Atlas Mountains against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus was evaluated and analyzed using chemometric tools. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) against S. aureus were the lowest (112.5 ± 54.5 mg/mL), revealing that this species was most sensitive to Zantaz honey. P. aeruginosa showed an intermediate sensitivity (MIC= 118.75 ± 51.9 mg/mL), while E. coli was the most resistant to treatment (MIC = 175 ± 61.2 mg/mL). Content of monosaccharides, certain minerals, and phenolic compounds correlated with antibacterial activity (p < 0.05). Principal component analysis of physicochemical characteristics and antibacterial activity indicated that the parameters most associated with antibacterial activity were color, acidity, and content of melanoidins, fructose, epicatechin, methyl syringate, 4-coumaric acid, and 3-coumaric acid.


2015 ◽  
Vol 742 ◽  
pp. 128-131 ◽  
Author(s):  
Jian Min Zhou ◽  
Jun Yang ◽  
Qi Wan

This paper introduces the theory of eddy current pulsed thermography and expounds the research status of eddy current pulsed thermography in application and information extraction. Thermographic signal reconstruction, pulsed phase thermography, principal component analysis were introuduced in this paper and listed some fusion multiple methods to acquire information from infrared image. At last, it summarizes research progress, existing problem and deelopment of eddy current pulsed thermography.


2011 ◽  
Vol 29 (No. 6) ◽  
pp. 595-602 ◽  
Author(s):  
Q. Lü ◽  
M.-j. Tang ◽  
J.-r. Cai ◽  
J.-w. Zhao ◽  
S. Vittayapadung

It is necessary to develop a non-destructive technique for kiwifruit quality analysis because the machine injury could lower the quality of fruit and incur economic losses. Bruises are not visible externally owing to the special physical properties of kiwifruit peel.We proposed the hyperspectral imaging technique to inspect the hidden bruises on kiwifruit. The Vis/NIR (408&ndash;1117 nm) hyperspectral image data was collected. Multiple optimal wavelength (682, 723, 744, 810, and 852 nm) images were obtained using principal component analysis on the high dimension spectral image data (wavelength range from 600 nm to 900 nm). The bruise regions were extracted from the component images of the five waveband images using RBF-SVM classification. The experimental results showed that the error of hidden bruises detection on fruits by means of hyperspectral imaging was 12.5%. It was concluded that the multiple optimal waveband images could be used to constructs a multispectral detection system for hidden bruises on kiwifruits.


1983 ◽  
Vol 61 (4) ◽  
pp. 1105-1116 ◽  
Author(s):  
Kern Ewing

Relationships between environmental variables and species distribution were studied in a brackish intertidal marsh formed by the Skagit River as it enters the Puget Sound bay system in Washington. Transects were established which covered the range of environmental variation in the marsh. A grid of environmental measuring stations provided information on soil texture, organic content of soil fines, macroorganic material in the soil, soil temperatures, interstitial soil water salinity, soil redox potential, and site elevation. Binary discriminant analysis, a nonparametric method using species presence–absence data, was used to construct standardized residual matrices. Principal component analysis of standardized residuals (Q mode) indicated that salinity and soil texture were strongly correlated with the first factor generated, elevation with the second, and soil redox potential with the third. The factors explained, respectively, 48, 21, and 14% of the variance in the residuals matrix. From R-mode analysis, eight community types were derived: three dominated by Carex lyngbyei, two by Scirpus americanus, one by Scirpus maritimus, and two which are highly diverse.


Proceedings ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 13 ◽  
Author(s):  
Yousefi ◽  
Ibarra-Castanedo ◽  
Maldague

Detection of subsurface defects is undeniably a growing subfield of infrared non-destructive testing (IR-NDT). There are many algorithms used for this purpose, where non-negative matrix factorization (NMF) is considered to be an interesting alternative to principal component analysis (PCA) by having no negative basis in matrix decomposition. Here, an application of Semi non-negative matrix factorization (Semi-NMF) in IR-NDT is presented to determine the subsurface defects of an Aluminum plate specimen through active thermographic method. To benchmark, the defect detection accuracy and computational load of the Semi-NMF approach is compared to state-of-the-art thermography processing approaches such as: principal component thermography (PCT), Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT), Sparse PCT, Sparse NMF and standard NMF with gradient descend (GD) and non-negative least square (NNLS). The results show 86% accuracy for 27.5s computational time for SemiNMF, which conclusively indicate the promising performance of the approach in the field of IR-NDT.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 5984
Author(s):  
Chang Kook Oh ◽  
Changbin Joh ◽  
Jung Woo Lee ◽  
Kwang-Yeun Park

The construction of prestressed concrete bridges has witnessed a steep increase for the past 50 years worldwide. The constructed bridges exposed to various environmental conditions deteriorate all along their service life. One such degradation is corrosion, which can cause significant damage if it occurs on the main structural components, such as prestressing tendons. In this study, a novel non-destructive evaluation method to incorporate a movable yoke system with denoising algorithm based on kernel principal component analysis is developed and applied to identify the loss of cross-sectional area in corroded external prestressing tendons. The proposed method using denoised output voltage signals obtained from the measuring device appears to be a reliable and precise monitoring system to detect corrosion with less than 3% sectional loss.


Sign in / Sign up

Export Citation Format

Share Document