Naldrettite (Pd2Sb): A new find in Brazil and comparison with worldwide occurrences

2021 ◽  
Vol 59 (6) ◽  
pp. 1801-1820
Author(s):  
Giorgio Garuti ◽  
Federica Zaccarini

ABSTRACT Naldrettite (Pd2Sb) is a PGM discovered in 2005 in Mesamax Northwest deposit, Ungava region, Quebec, Canada. Before and after its approval, PGM with the naldrettite type composition have been reported from a number of localities worldwide. Most frequently, naldrettite has been documented in magmatic Ni–Cu–PGE sulfide deposits, hydrothermal veins in porphyry coppers of the Cu–Au type, and PGE deposits of Alaskan-type zoned intrusions. Naldrettite has been occasionally found in metasomatic Sb–As sulfide ore, metamorphic Ni–oxide ore, and podiform chromitites, although these occurrences have not been fully constrained by solid chemical analyses or paragenetic reconstruction. In this paper we report the first discovery of naldrettite in Brazil. This new finding occurs in a chromitite sample collected in the Luanga Complex, a Neo-archaean layered intrusion in the Carajás Mineral Province. Paragenetic association with alteration assemblages (ferrianchromite, Fe-hydroxides, chlorite) suggests precipitation of naldrettite from metamorphic hydrothermal fluids. The average composition of the Luanga sample (Pd1.76Pt0.24)Σ2.00(Sb0.57As0.43)Σ1.00 shows major substitution of Pt and As. These elements were derived from the breakdown of primary sperrylite, and were incorporated in naldrettite deposited by percolating fluids, at temperature below 350 °C (maximum temperature registered by the crystallization of associated chlorite). An overview of documented occurrences indicates that naldrettite can form in a variety of igneous rocks (ultramafic, mafic, felsic), even involving minimal concentrations of Pd and Sb. Crystallization of naldrettite generally occurs in the post-magmatic stage due to the activity of hydrothermal fluids containing volatile species Sb, As, Bi, Te, and Pd due to its higher mobility compared with the other PGE. A major issue concerns the origin of fluids that can be: (1) “residual”, after the main crystallization of the host magma, (2) “metamorphic”, during regional metamorphism or serpentinization, and (3) “metasomatic”, emanating from an exotic magma intrusion. The combination of two or three of these factors is the most likely process observed in the naldrettite-bearing complexes.

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Lingling Shen ◽  
Li Lu ◽  
Tianjie Hu ◽  
Runsheng Lin ◽  
Ji Wang ◽  
...  

Homogeneity of climate data is the basis for quantitative assessment of climate change. By using the MASH method, this work examined and corrected the homogeneity of the daily data including average, minimum, and maximum temperature and precipitation during 1978–2015 from 404/397 national meteorological stations in North China. Based on the meteorological station metadata, the results are analyzed and the differences before and after homogenization are compared. The results show that breakpoints are present pervasively in these temperature data. Most of them appeared after 2000. The stations with a host of breakpoints are mainly located in Beijing, Tianjin, and Hebei Province, where meteorological stations are densely distributed. The numbers of breakpoints in the daily precipitation series in North China during 1978–2015 also culminated in 2000. The reason for these breakpoints, called inhomogeneity, may be the large-scale replacement of meteorological instruments after 2000. After correction by the MASH method, the annual average temperature and minimum temperature decrease by 0.04°C and 0.06°C, respectively, while the maximum temperature increases by 0.01°C. The annual precipitation declines by 0.96 mm. The overall trends of temperature change before and after the correction are largely consistent, while the homogeneity of individual stations is significantly improved. Besides, due to the correction, the majority series of the precipitation are reduced and the correction amplitude is relatively large. During 1978–2015, the temperature in North China shows a rise trend, while the precipitation tends to decrease.


2021 ◽  
Author(s):  
Jingyu Jiang ◽  
Ke Zhao ◽  
Yuanping Cheng ◽  
Shaojie Zheng ◽  
Shuo Zhang ◽  
...  

Abstract To study the effect of magma intrusion on the thermal evolution of low-rank coal with high water content, the mathematical relationship between water content variation and thermal conductivity of low-rank coal was analyzed by COMSOL Multiphysics numerical simulation and field validation. Taking Daxing Mine in Tiefa coalfield as the research background, the effects of magma finite time intrusion mechanism and water volatilization in coal on thermal evolution and organic maturity of coal seam are investigated in this paper. The results show that as the sill thickness increases, the thermal evolution temperature of the coal seam increases, the required thermal evolution time increases and the final retention temperature increases after the coal seam is cooled down. Approaching the magma, the maximum temperature that the coal seam can reach increases, the maximum temperature lasts longer, and the final temperature retained by the coal seam becomes higher. The increase of water content of coal makes the thermal conductivity increase, and the rate of heat transfer from coal seam is accelerated, and more heat is transferred to distant places in the same time. At the same time, the heat lost by the magma in the same time increases, the time required for the cooling of the magma decreases, and the maximum temperature reached by the underlying coal seam is significantly lower. The presence of moisture weakens the thermal evolution of the magma to the coal seam and reduces the expected maturity of the coal. The results of average random vitrinite reflectance (Ro) and moisture examination of coal samples collected at the Daxing Mine site verified the numerical simulation results of magma thermal evolution.


2021 ◽  
Author(s):  
Kazuki Yanagiya ◽  
Masato Furuya ◽  
Go Iwahana ◽  
Petr Danilov

<p>The Arctic has experienced numerous fires in last year, and from June to August 2020, satellite data showed record carbon dioxide emissions from forest fires. Peatland in the Arctic contains large amounts of organic carbon, and their release into the atmosphere can create positive feedbacks for further increase of air temperature. In addition, forest fires burn the surface vegetation layer that has been acting as a heat insulator, which will accelerate the thawing of permafrost on scales of years to decades. Although the thaw depth can recover together with the recovery of surface vegetation, the massive segregated ice is not recoverable once it melted. Our study area is around the Batagay, Sakha Republic, Eastern Siberia. In June 2020, Verkhoyansk, located about 55 km west of Batagay, recorded the highest daily maximum temperature of 38.0 degrees Celcius. The Sentinel-2 optical satellite images showed a number of forest fires in 2019-20. We detected the surface deformation signals at each fire site with the remote-sensing method called InSAR (Interferometric Synthetic Aperture Radar). Also, we conducted a field observation in September 2019 for validations: 1) installed a soil thermometer and soil moisture meter; 2) established a reference point for leveling and first survey; 3) measured the thawing depth with a frost probe.</p><p> For seasonal ground deformations immediately after the fire, we mainly analyzed Sentinel-1 images. Sentinel-1 is the ESA's C-band SAR satellite, which has a short imaging interval of 12 days. As the short wavelength, vegetation changes lost coherence, and some pairs failed to detect ground deformation signals immediately after the fire. However, after the end of September, we detected displacements toward the satellite line-of-sight direction at all the fire sites. It indicates uplift signals due presumably to frost heave at the fire scar. For long-term deformations over one year, we used ALOS2 imaged derived by JAXA's L band SAR satellite. In the previous studies in Alaska, the ground deformation signal immediately after a fire could not be detected due to the coherence loss in the pairs derived from pre-fire and post-fire SAR images. Indeed, we could not detect deformation signals at the fire scars from the June pairs derived before and after the fire. However, the January pairs and March pairs, both of which were acquired before and after the fire, showed relatively high coherence even in the fire scar and indicated clear subsidence signals by as much as 15 cm. We interpret that, because the studied Verkhoyansk Basin is very dry and has little snow cover, the microwaves could penetrate the snow layer, which allowed us to detect deformation signals even in winter. Yanagiya and Furuya (2020) validated the consistency of the winter uplift signal for the 2014 fire site. We also analyzed the SM1 high spatial resolution mode (3 m) ALOS2 InSAR to investigate the specific ground deformation at each fire site.</p>


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 373 ◽  
Author(s):  
Federica Zaccarini ◽  
Giorgio Garuti

Laurite, ideally (Ru,Os)S2, is a common accessory mineral in podiform and stratiform chromitites and, to a lesser extent, it also occurs in placer deposits and is associated with Ni-Cu magmatic sulfides. In this paper, we report on the occurrence of zoned laurite found in the Merensky Reef of the Bushveld layered intrusion, South Africa. The zoned laurite forms relatively large crystals of up to more than 100 µm, and occurs in contact between serpentine and sulfides, such as pyrrhotite, chalcopyrite, and pentlandite, that contain small phases containing Pb and Cl. Some zoned crystals of laurite show a slight enrichment in Os in the rim, as typical of laurite that crystallized at magmatic stage, under decreasing temperature and increasing sulfur fugacity, in a thermal range of about 1300–1000 °C. However, most of the laurite from the Merensky Reef are characterized by an unusual zoning that involves local enrichment of As, Pt, Ir, and Fe. Comparison in terms of Ru-Os-Ir of the Merensky Reef zoned laurite with those found in the layered chromitites of the Bushveld and podiform chromitites reveals that they are enriched in Ir. The Merensky Reef zoned laurite also contain high amount of As (up to 9.72 wt%), Pt (up to 9.72 wt%) and Fe (up to 14.19 wt%). On the basis of its textural position, composition, and zoning, we can suggest that the zoned laurite of the Merensky Reef is “hydrothermal” in origin, having crystallized in the presence of a Cl- and As-rich hydrous solution, at temperatures much lower than those typical of the precipitation of magmatic laurite. Although, it remains to be seen whether the “hydrothermal” laurite precipitated directly from the hydrothermal fluid, or it represents the alteration product of a pre-existing laurite reacting with the hydrothermal solution.


During late Palaeozoic (Hercynian) low-pressure regional metamorphism in the Pyrenees, exceptionally high thermal gradients existed within the upper crust, and temperatures as high as 700 °C were attained at depths as shallow as 10 km, resulting in large-scale crustal anatexis. Stable isotope studies indicate that the crust was flushed by circulating ground waters to depths of 12 km, but the amount of fluid involved below 8 km was probably not much greater than 50% of the rock mass, and this fluid apparently did not penetrate the pre-Palaeozoic basement below 12 km. There is no evidence for continental collision in the region at that time, and these data, together with other geological and geophysical constraints, suggest that the most plausible tectonic setting for the metamorphism is a zone of continental rifting, possibly associated with strike-slip movement. Thermal modelling suggests that a transient, high-temperature heat source in the lower crust is required to account for the observed metamorphic P - T arrays. Among a range of possible solutions, a basaltic sill, 6-8 km thick and emplaced at 14 km could generate a maximum temperature array similar to those observed in the Pyrenees.


1988 ◽  
Vol 52 (368) ◽  
pp. 615-625 ◽  
Author(s):  
A. Pesquera ◽  
F. Velasco

AbstractThe degree of metamorphism affecting the Devonian-Carboniferous rocks of the Palaeozoic Cinco Villas massif has been studied by (a) petrographic techniques, (b) illite crystallinity, and (c) degree of graphitization of the carbonaceous material. Some mineralogical differences have been found between the Devonian and Carboniferous rocks; paragonite and mixed-layer paragonite/muscovite, typical of anchimetamorphic areas, appear in the Devonian but are not found in the Carboniferous rocks. These are characterized by the local appearance of chloritoid, garnet, amphibole, epidote, andalusite and biotite, and the generalized presence of muscovite/chlorite. Illite crystallinity shows a metamorphic zonation (anchizone epizone) towards the granitic Aya massif, and a concentric pattern around the intrusive body.The optical analysis shows that the first effects of the regional metamorphism began before the D2 deformation, reaching its paroxysm during this phase and continuing afterwards. The degree of graphitization evolves progressively with metamorphism, and this fact is reflected in an exponential relationship between d(002) and crystallinity Lc(002). The similarity in the degree of graphitization between homologous materials within and outside the Aya aureole suggests a similar kinetic factor for both the thermal and regional metamorphisms, or a similar duration time. This fact, as well as the distribution and relationship between the deformation and recrystallization of the minerals, suggests a syn-plutonic regional metamorphism developed at low pressures, in accordance with the value of the b0 parameter for the white micas, and probably a maximum temperature of about 500°C.


Author(s):  
David Gonzalez-Nino ◽  
Lauren M. Boteler ◽  
Nicholas R. Jankowski ◽  
Dimeji Ibitayo ◽  
Pedro O. Quintero

Metallic phase change materials (PCMs) have been demonstrated as an excellent alternative to act as a passive cooling system for pulse power applications. The possibility of integrating metallic PCMs, directly on top of a heat source, reducing the thermal resistance between the device and the cooling solution, could result in a significant improvement in thermal management for transient applications. However, the effectiveness of this method of implementation will depend on the quality of the interface between the metallic PCM and the heat source. For this work, a metallic PCM (49Bi/18Pb/12Sn/21In-Bi/Pb/Sn/In for simplicity) was placed directly on top of a device that has a layer of silicon nitride on the top. The device was pulsed with powers of 40W – 160W (84W/cm2 – 338W/cm2) with a 20 ms duration. After reaching the maximum power, the device was pulsed for a second cycle, and the temperature profiles were compared. Micrographical inspections, at the interlayer between the silicon nitride and metallic PCM, were performed before and after the pulses and compared. A maximum temperature of ≈20–25% higher was observed in the performance (at 80W) after pulse cycling. A visual inspection at the mating surfaces, between the metallic PCM and device, showed a clear difference between the contact surfaces before and after pulses. Significant voiding at the PCM interfacial layer was observed after cyclic loading which is believed to be the cause of the recorded increment in maximum temperature.


1975 ◽  
Vol 12 (2) ◽  
pp. 209-226 ◽  
Author(s):  
H. Ueno ◽  
E. Irving ◽  
R. H. McNutt

The Whitestone anorthosite and diorite are situated in the Grenville Structural Province north of Parry Sound, Ontario. They are intruded into sediments and igneous rocks, the whole being metamorphosed to amphibolite facies. Aside from soft magnetizations due to the present field four magnetizations are present, two owing to hematite, the third mainly to magnetite, and a fourth of uncertain source. It is argued that these are thermoremanent magnetizations acquired during very slow cooling following regional metamorphism in the interval 1100 to 1000 m.y. A single-stage cooling model based on Neel's single domain theory is developed, which suggests that the hematite magnetizations were acquired during slow cooling at about 240 °C and the magnetite magnetizations at about 200 °C. The poles from Whitestone rocks fall among a group of poles from elsewhere in the Grenville Province. There are serious problems in integrating these Grenville poles with those from other parts of the Canadian Shield, and three possible ways of relating them are evaluated. Poles from Grenville-type rocks from the Baltic Shield are near to the Grenville poles after correction is made for the late Phanerozoic opening of the Atlantic, showing that the relative positions of Laurentian and Baltic Shields before and after the Caledonian orogeny were very similar. There is however a small but significant difference, and this is attributed to Caledonian diastrophism.


Sports ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 164 ◽  
Author(s):  
Evangelia Zacharia ◽  
Polyxeni Spiliopoulou ◽  
Spyridon Methenitis ◽  
Angeliki-Nikoletta Stasinaki ◽  
Nikolaos Zaras ◽  
...  

The aim of the study was to evaluate power performance and muscle morphology adaptations in response to 5 weeks of fast-eccentric squat training (FEST) performed twice per week, with three different training volumes. Twenty-five moderately trained females were assigned into three groups performing eight repetitions of FEST of either four sets (4 × 8 group; N = 9), 6 sets (6 × 8 group; N = 8) or eight sets (8 × 8 group, N = 8). Before and after the intervention, countermovement jumping height (CMJh) and power (CMJp), half squat maximal strength (1-RM), quadriceps cross-sectional area (QCSA) and vastus lateralis (VL) architecture and fiber type composition were evaluated. Significant increases (p < 0.05) were found for all groups, with no differences among them in 1-RM (4 × 8: 14.8 ± 8.2%, 6 × 8: 13.1 ± 9.2% and 8 × 8: 21.6 ± 7.0%), CMJh (4 × 8: 12.5 ± 8.5%, 6 × 8: 11.3 ± 9.3% and 8 × 8: 7.0 ± 6.2%), CMJp (4 × 8: 9.1 ± 6.0%, 6 × 8: 7.1 ± 5.2% and 8 × 8: 5.0 ± 3.9%) and QCSA (4 × 8: 7.7 ± 4.7%, 6 × 8: 9.0 ± 6.8% and 8 × 8: 8.2 ± 6.5%). Muscle fiber type distribution remained unaltered after training in all groups. VL fascicle length increased and fascicle angle decreased only in 6 × 8 and 8 × 8 groups. In conclusion, four sets of eight fast-eccentric squats/week increase lower body power and strength performance and maintain type IIX muscle fibers after 5 weeks, at least in moderately trained females.


Sign in / Sign up

Export Citation Format

Share Document