scholarly journals Effect of potassium humate and growth stage on phenolic compound and vitamin C accumulation in kale (Brassica oleracea var. sabellica)

2021 ◽  
Vol 941 (1) ◽  
pp. 012032
Author(s):  
J D Anteh ◽  
O A Timofeeva ◽  
A A Mostyakova

Abstract Kale is one of the top economically valuable crops in the world because of its high antioxidant content. Research shows that the antioxidant profile of Brassica crops varies with growth stages due to soil fertility, temperature, light and other agronomic factors. This study aimed to analyze the effect of potassium humate on phenolic compound content, the greatest contributor to the antioxidant properties of the highest-ranking superfood kale (Brassica oleracea var. sabellica). Our results showed that potassium humate at different growth stages elicited phenolic compounds in the studied samples. Leaves of 22 weeks old plants accumulated phenolic compounds about two times higher than those of 7 weeks old plants. Vitamin C content was increased by potassium humate treatment at 7 weeks. At 22 weeks levels in controls and treated kale leaves did not significantly differ.

2021 ◽  
Vol 12 (4) ◽  
pp. 740-744
Author(s):  
J. D. Anteh ◽  
O. A. Timofeeva ◽  
A. A. Mostyakova

The increased global mortality caused by the rise in chronic diseases can be reduced by the consumption of antioxidant-rich foods. Leafy green kale (Brassica oleracea var. sabellica) has high nutritional value due to its high antioxidant content and its consumption is highly correlated with a reduced risk of developing some chronic diseases. The paper focuses on examining the effects of two different mineral nutrients – neodymium and potassium humate – on the accumulation of flavonoids, vitamin C, phenolic compounds, carotenoids and malondialdehyde (MDA) content in field-grown leafy green kale. Leaves from treated plants were collected at three stages of maturity –14 weeks, 18 weeks, and 22 weeks and subjected to spectrophotometric analysis. The results showed that the stimulatory effect of both mineral nutrients on the phytochemicals varied at the different growth stages - the highest significant effect of neodymium has been mostly observed at week 18 with high flavonoid, vitamin C, and carotenoid levels. Phenolic compounds for this variant are the same as in the control samples, while the level of malondialdehyde was reduced by 21.8%, signifying increased antioxidant activity. The rare earth element primarily maintained some phytochemical content at weeks 14 and 22. Following soil treatment with potassium humate, the levels of studied phytochemical compounds were either maintained or elevated at weeks 14, 18, and 22. Humic acid exerted the greatest decrease in malondialdehyde content in kale at week 14, indicating a reduction in the lipid peroxidation process in leaves. Accordingly, the harvest date of leafy green kale (Brassica oleracea var. sabellica) should depend on the type of mineral nutrient applied. The obtained results provide information that may be relevant to the production of functional varieties and enhance the nutritional and possibly the economic value of kale.


2021 ◽  
Vol 13 (3) ◽  
pp. 208-224
Author(s):  
Joyce D. Anteh ◽  
Olga A. Timofeeva ◽  
Antonina A. Mostyakova

Green leafy kale (Brassica oleracea var. sabellica) has huge scientific attention because of its health-promoting functionality. In the present study the impact of NPK, energen, biostim and humate on flavonoid, phenolic compounds, vitamin C, carotenoids, malondialdehyde (MDA), protein, proline and soluble sugar in kale was investigated. The mineral nutrients mostly increased but in some cases maintained the studied metabolites. The stimulatory effect of applied mineral nutrients on the phytochemicals analyzed varied with the different combinations of macro and microelements. Lipid peroxidation was minimized in leaves treated with mineral nutrients hence a reduction in MDA levels. Contrary to the correlation between nitrogen deficiency and increase in polyphenol and vitamin C content in plants, NPK and biostim did not reduce phenolic compound levels. The results of this study showed that NPK maximized the synthesis of vitamin C and proline; energen - phenolic compounds, carotenoids and sugar; biostim – phenolic compounds, proteins and sugar; humate – flavonoids and sugar in curly kale. Therefore, the type of macronutrient and micronutrients combination increases phytochemicals in differently. To enhance the synthesis of phenolic compounds and vitamins, the most promising additives are those containing humic acids (humate and energen), and biostim proved to be more effective for the synthesis of proteins. Background. The understanding of how diet affects the incidence or treatment of disease has led to a rise in consumer’s demand for functional foods as well as created the market for natural sources of health benefitting compounds rather than the synthetic sources. Curly kale has gained scientific attention as a functional food because it contains higher levels of phytochemicals than most vegetables. These phytochemicals have shown antioxidant, antimutagenic, cytotoxic, antifungal, and antiviral activities. However, the content levels of these metabolites are influenced by not only genetic but environmental factors. It was of interest to evaluate how various mineral nutrients can elicit the accumulation of these compounds that minimize the risk of chronic diseases or aid in their treatment. Purpose. Evaluate how the mineral nutrients, NPK, energen, biostim and humate affect the content of metabolites (proteins, sugars, flavonoids, phenolic compounds, vitamin C, carotenoids, MDA and proline) in curly kale (Brassica oleracea var. sabellica). Materials and methods. Sprouts from kale seed kept wet in a Petri dish for 7 days were transferred to the field. At 6 weeks old four mineral nutrients (NPK, energen, humate and biostim) were added to the soil. Control variants were treated with water. A week later, the leaves were harvested after which, the phenolic compound, flavonoid, protein, sugar, vitamin C, carotenoid, MDA and proline contents were determined using spectrophotometric methods. Results. It was shown that humate fertilizer elicited the highest accumulation of flavonoids. Kale plants fertilized with energen were observed to have the highest phenolic compound content. NPK, energen and humate caused a similarly positive effect on vitamin C content in leaves, unlike biostim whose effect did not significantly differ from control plants. Energen treated kale had the highest increment of carotenoids. A varied reduction of MDA levels in plants treated with all four mineral nutrients was observed in kale leaves. Plants fertilized with biostim accrued the highest protein content in leaves. Proline content increased under the influence of all fertilizers studied. Sugar levels for all kale plants treated with the studied mineral nutrients were enhanced equally Conclusion. Macro and microelements supplied by mineral nutrients differentially boost the biosynthesis of health-promoting metabolites in curly kale, thereby enhancing its quality.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 523
Author(s):  
Stefania Stelluti ◽  
Matteo Caser ◽  
Sonia Demasi ◽  
Valentina Scariot

Tepals constitute the most abundant bio-residues of saffron (Crocus sativus L.). As they are a natural source of polyphenols with antioxidant properties, they could be processed to generate valuable biorefinery products for applications in the pharmaceutical, cosmetic, and food industries, becoming a new source of income while reducing bio-waste. Proper storage of by-products is important in biorefining and dehydration is widely used in the herb sector, especially for highly perishable harvested flowers. This study aimed to deepen the phytochemical composition of dried saffron tepals and to investigate whether this was influenced by the extraction technique. In particular, the conventional maceration was compared with the Ultrasound Assisted Extraction (UAE), using different solvents (water and three methanol concentrations, i.e., 20%, 50%, and 80%). Compared to the spice, the dried saffron tepals showed a lower content of total phenolics (average value 1127.94 ± 32.34 mg GAE 100 g−1 DW) and anthocyanins (up to 413.30 ± 137.16 mg G3G 100 g−1 DW), but a higher antioxidant activity, which was measured through the FRAP, ABTS, and DPPH assays. The HPLC-DAD analysis detected some phenolic compounds (i.e., ferulic acid, isoquercitrin, and quercitrin) not previously found in fresh saffron tepals. Vitamin C, already discovered in the spice, was interestingly detected also in dried tepals. Regarding the extraction technique, in most cases, UAE with safer solvents (i.e., water or low percentage of methanol) showed results of phenolic compounds and vitamin C similar to maceration, allowing an improvement in extractions by halving the time. Thus, this study demonstrated that saffron tepals can be dried maintaining their quality and that green extractions can be adopted to obtain high yields of valuable antioxidant phytochemicals, meeting the requirement for a sustainable biorefining.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 926
Author(s):  
Victoria Chepel ◽  
Valery Lisun ◽  
Liubov Skrypnik

Heather (Calluna vulgaris (L.) Hull.) is noted for a diverse chemical composition and a broad range of biological activity. The current study was aimed at monitoring changes in the accumulation of certain groups of phenolic compounds in various organs of heather (leaves, stems, roots, rhizomes, flowers, and seeds) at different growth stages (vegetative, floral budding, flowering, and seed ripening) as well as studying antioxidant (employing the DPPH and FRAP assays) and antibacterial activity of its extracts. The highest total amount of phenolic compounds, tannins, flavonoids, hydroxycinnamic acids, and proanthocyanidins was detected in leaves and roots at all growth stages, except for the flowering stage. At the flowering stage, the highest content of some groups of phenolic compounds (flavonoids, proanthocyanidins, and anthocyanins) was observed in flowers. Highest antioxidant activity was recorded for the flower extracts (about 500 mg of ascorbic acid equivalents per gram according to the DPPH assay) and for the leaf extract at the ripening stage (about 350 mg of ascorbic acid equivalents per gram according to the FRAP assay). Strong correlation was noted between antioxidant activity (DPPH) and the content of anthocyanins (r = 0.75, p ≤ 0.01) as well as between antioxidant activity (FRAP) and the total content of phenolic compounds (r = 0.77, p ≤ 0.01). Leaf extracts and stem extracts turned out to perform antibacterial action against both gram-negative and gram-positive bacteria, whereas root extracts appeared to be active only against B. subtilis, and rhizome extracts against E. coli.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 446-446
Author(s):  
Choon Nam Ong ◽  
Wee Kee Tan ◽  
Chiang Shiong Loh

Abstract Objectives This study aimed to systematically investigate a comprehensive list of bioactive components in a commonly consumed Asian leafy vegetable, Brassica rapa. They included polyphenols, fat soluble micronutrients such as carotenoids, tocopherols and phylloquinone, and various glucosinolates (GLs), in addition to the total antioxidant capacity, at three different growth stages. Methods Phenolic compounds were measured using C-18 HPLC/MS. Carotenoids, vitamin E and phylloquinone (vitamin K1) were detected using RP-30-HPLC/MS. Glucosinolates were determined using HILIC-HPLC/MS. Different AOX capacities were assessed either using UV-Visible or Fluorescent Spectrophotometer. Results Phenolic compounds, such as total flavonoid and hydroxycinnamic acids, were highest at 3-leaf stage and significantly lower in mature plant. The main carotenoids, lutein and β-carotene, remained the same throughout the different growth stages. However, violaxanthin, neoxanthin and β-cryptoxanthin were higher also at 3-leaf stage, and decrease gradually with growth. In contrast, tocopherol concentration continued to increase and was highest at mature stage. There was little change for phylloquinone (vitamin K1) throughout the three studied stages. For the unique components in Brassicaeae, both dominating aliphatic and indolic-GLs concentrations were significantly higher at 1-leaf stage than at mature stage ( > 30x), whereas the aromatic GLs, although of much lower concentrations, continued to increase throughout the growth, and with highest amount at mature stage, suggesting that there is metabolic pathway shift of these secondary metabolites during plant development. In general, antioxidant capacity measured using Scavenging of DPPH radicals, Trolox Equivalent Antioxidant Capacity and Oxygen Radical Absorbance Capacity suggested that there was an insignificant increase of total antioxidant content from seedling to mature vegetable. Conclusions The overall findings suggest that most of the nutritional active bio-components were higher at younger stages, either at 1-leaf or 3-leaf stage, except α-tocopherol, with continual accumulation during plant development. These comprehensive profiles of various nutrients should be valuable to the nutritional community. Funding Sources National Research Foundation, Prime Minister's Office, Singapore.


Sign in / Sign up

Export Citation Format

Share Document