head cooling
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 20)

H-INDEX

27
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Sheryl E Arambula ◽  
Miguel Perez-Pouchoulen ◽  
Jaylyn Waddell ◽  
Andressa Rejani Ribeiro Leite ◽  
Emily L Graham ◽  
...  

Abstract Perinatal hypoxia-ischemia (HI) is a major health issue with no effective therapies beyond head cooling. Notably, male infants are at a greater risk for HI and exhibit more extreme deficits than females. Extensive clinical evidence indicates that perinatal HI impacts the developing cerebellum, yet this region has been largely ignored in preclinical models. Using a modified version of the Rice-Vannucci rat model for HI injury at postnatal day 10, we find reductions in dendritic complexity of Purkinje neurons in males one week later. Females exhibited modest but opposite effects, with slight increases in dendritic complexity, based on Sholl analysis. A custom-made NanoString panel for quantifying mRNAs associated with development, inflammation, and sex differences found almost no commonality in the response to HI in males versus females, with males up-regulating genes associated with microglia activity whereas females increased expression of a protective complement protein, but also of enzymes associated with endocannabinoids and prostaglandins. Both sexes exhibited a reduction in the GABA-synthetic enzymes, GAD-65 and GAD-67, after HI, suggesting increased excitotoxicity, but why males suffered more damage to the Purkinje neurons is unknown.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 59
Author(s):  
Alexander Balitskii ◽  
Myroslav Kindrachuk ◽  
Dmytro Volchenko ◽  
Karol F. Abramek ◽  
Olexiy Balitskii ◽  
...  

The article is devoted to the following issues: boiling of fluid in the cooling jacket of the engine cylinder head; agents that influenced the thermal conductivity coefficient of nanofluids; behavior of nanoparticles and devices with nanoparticles in the engine’s cylinder head cooling system. The permissible temperature level of internal combustion engines is ensured by intensification of heat transfer in cooling systems due to the change of coolants with “light” and “heavy” nanoparticles. It was established that the introduction of “light” nanoparticles of aluminum oxide into the water in a mass concentration of 0.75% led to an increase in its thermal conductivity coefficient by 60% compared to the base fluid at a coolant temperature of 90 °C, which corresponds to the operating temperature of the engine cooling systems. At the indicated temperature, the base fluid has a thermal conductivity coefficient of 0.545 W/(m °С), for nanofluid with particles its value was 0.872 . At the same time, a positive change in the parameters of the nanofluid in the engine cooling system was noted: the average movement speed increased from 0.2 to 2.0 m/s; the average temperature is in the range of 60–90 °C; heat flux density 2 × 102–2 × 106 ; heat transfer coefficient 150–1000 . Growth of the thermal conductivity coefficient of the cooling nanofluid was achieved. This increase is determined by the change in the mass concentration of aluminum oxide nanoparticles in the base fluid. This will make it possible to create coolants with such thermophysical characteristics that are required to ensure intensive heat transfer in cooling systems of engines with various capacities.


Author(s):  
Nur Shakila Mazalan ◽  
Grant Justin Landers ◽  
Karen Elizabeth Wallman ◽  
Ullrich Ecker

his study assessed the effectiveness of head cooling during exercise in the heat on cognitive performance, either alone or with ice ingestion. Ten healthy males, non-acclimatized to heat, ran (70% V̇O2peak) for 2×30 min in heat (35 ± 0.9°C, 68.2 ± 6.9% RH). Participants completed 3 trials: 10 min of head cooling during exercise (HC); precooling with crushed ice (7gikg-1) and head cooling during exercise (MIX); or no-cooling/control (CON). Working memory was assessed using the automated operation span task (OSPAN) and serial seven test (S7). Following MIX, S7 scores were improved compared to CON (12 ± 9.5, p = 0.004, d = 1.42, 0.34-2.28) and HC (4 ± 5.5, p = 0.048, d = 0.45, -0.47 to 1.3) during exercise. Moderate to large effect sizes were recorded for S7 and OSPAN following MIX and HC compared to CON, suggesting a tendency for improved cognitive performance during exercise in heat. Following precooling (MIX), core body temperature (Tc) and forehead temperature (Th) were lower compared to baseline (-0.75 ± 0.37°C, p < 0.001; -0.31 ± 0.29°C, p = 0.008, respectively) but not in HC or CON (p > 0.05). Thermal sensation (TS) was lower in MIX and HC compared to CON during exercise (p < 0.05). The reduction in Tc, Th and TS with MIX may have attenuated the effect of heat and subsequently improved working memory during exercise in heat.


2021 ◽  
Vol 326 ◽  
pp. 101-107
Author(s):  
Marcin Bilewicz ◽  
Tomasz Tański ◽  
Tomasz Gliński ◽  
Julio Viana

Aim of the work was obtaining of the composite in form of n-layer polymer film and investigation of the structure. Manufacturing of the film combine the advantages of individual layers in one production process to achieve multilayer composite. In the experiment LDPE was used as main material. Processing of material was done using blow molding process and final product was obtained if the form of thin film. Conventional blown film line contains one extruder, die head, cooling ring and calibration basket, collapsing frame and winding rolls. To develop structure unique blow film line has been used. Two another extruder were joined to existing one transferring material simultaneously to the die head where 3 materials were joined together to combine 3-layered film. This process gives possibility to design final product and control the structure in many various combinations.


Author(s):  
Marwan Al-Rjoub ◽  
Michael J. Kazmierczak ◽  
Amit Bhattacharya ◽  
Sathyaprabha Rakkimuthu ◽  
Sruthi Ramadurai ◽  
...  

2021 ◽  
Vol 73 (1) ◽  
pp. 9-15
Author(s):  
Roman KUZIAK ◽  
Valeriy PIDVYSOTS’KYY ◽  
Łukasz RAUCH ◽  
Maciej PIETRZYK ◽  
Tomasz ZYGMUNT

The paper deals with the new approach to the optimization of the pearlitic rail’s head hardening process aimed at balancing the relation between strength and ductility of the head running surface. In the industrial process, efforts have been undertaken so far to maximize the hardness of the rail’s head while maintaining its pearlite structure, resulting in obtaining enhanced wear resistance and resistance to the contact fatigue defects initiation. The new approach, described in this paper, aims at designing the head hardening process enabling achievement of the high hardness of the running surface combined with high ductility expressed in terms of the total elongation. To achieve this aim of the investigation, a computer program was developed capable of predicting the occurrence of the phase transformations during rail head cooling and microstructure features after cooling. The program was linked with dedicated inverse module enabling the adjustment of the cooling conditions to achieve the required state of the pearlitic structure.


2021 ◽  
pp. 0271678X2110180
Author(s):  
Alex L Fedinec ◽  
Jianxiong Liu ◽  
Rong Zhang ◽  
Mimily Harsono ◽  
Massroor Pourcyrous ◽  
...  

Using the cranial window technique, we investigated acute effects of head cooling on cerebral vascular functions in newborn pigs. Head cooling lowered the rectal and extradural brain temperatures to 34.3 ± 0.6°C and 26.1 ± 0.6°C, respectively. During the 3-h hypothermia period, responses of pial arterioles to endothelium-dependent dilators bradykinin and glutamate were reduced, whereas the responses to hypercapnia and an endothelium-independent dilator sodium nitroprusside (SNP) remained intact. All vasodilator responses were restored after rewarming, suggesting that head cooling did not produce endothelial injury. We tested the hypothesis that the cold-sensitive TRPM8 channel is involved in attenuation of cerebrovascular functions. TRPM8 is immunodetected in cerebral vessels and in the brain parenchyma. During normothermia, the TRPM8 agonist icilin produced constriction of pial arterioles that was antagonized by the channel blocker AMTB. Icilin reduced dilation of pial arterioles to bradykinin and glutamate but not to hypercapnia and SNP, thus mimicking the effects of head cooling on vascular functions. AMTB counteracted the impairment of endothelium-dependent vasodilation caused by hypothermia or icilin. Overall, mild hypothermia produced by head cooling leads to acute reversible reduction of selected endothelium-dependent cerebral vasodilator functions via TRPM8 activation, whereas cerebral arteriolar smooth muscle functions are largely preserved.


iScience ◽  
2021 ◽  
pp. 102472
Author(s):  
Fardin Hodoodi ◽  
Dr. Mohammad Allah-Tavakoli ◽  
Dr.Farzad Tajik ◽  
Dr. Iman Fatemi ◽  
Dr. Amir Moghadamahmadi

Author(s):  
Nur Shakila Mazalan ◽  
Grant Justin Landers ◽  
Karen Elizabeth Wallman ◽  
Ullrich Ecker

This study investigated the effectiveness of head cooling on cognitive performance after 30 min and 60 min of running in the heat. Ten moderately-trained, non-heat-acclimated, male endurance athletes (mean age: 22 ± 6.6 y; height: 1.78 ± 0.10 m; body-mass: 75.7 ± 15.6 kg; VO2peak: 51.6 ± 4.31 mL-1>kg-1>min) volunteered for this study. Participants performed two experimental trials: head cooling versus no-cooling (within-subjects factor with trial order randomized). For each trial, participants wore a head-cooling cap for 15 min with the cap either cooled to 0°C (HC) or not cooled (22°C; CON). Participants then completed 2 × 30 min running efforts on a treadmill at 70% VO2peak in hot conditions (35°C, 70% relative humidity), with a 10 min rest between efforts. Working memory was assessed using an operation span (OSPAN) task immediately prior to the 15 min cooling/no-cooling period (22°C, 35% RH) and again after 30 min and 60 min of running in the heat. Numerous physiological variables, including gastrointestinal core temperature (Tc) were assessed over the protocol. Scores for OSPAN were similar between trials, with no interaction effect or main effects for time and trial found (p = 0.58, p = 0.67, p = 0.54, respectively). Forehead temperature following precooling was lower in HC (32.4 ± 1.6°C) compared with CON (34.5 ± 1.1°C) (p = 0.01), however, no differences were seen in Tc, skin temperature, heart rate and ratings of perceived exertion between HC and CON trials at any time point assessed (p > 0.05). In conclusion, despite HC reducing forehead temperature prior to exercise, it did not significantly improve cognitive performance during (half-time break) or after subsequent exercise in hot environmental conditions, compared to a no cooling control.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Zhen Zhan ◽  
Huanhuan Cheng ◽  
Xianhong Lin ◽  
Yangyang Meng ◽  
Liying Dai ◽  
...  

Objective To investigate the effect of simple head cooling combined with ganglioside therapy on neonatal hypoxic-ischemic encephalopathy (HIE) and its clinical efficacy. Methods A total of 100 children with HIE admitted in the neonatal ward of our hospital from August 2018 to October 2020 were selected as the research objects, and were divided into control group and observation group according to the random number table method, with 50 cases in each group. The control group was treated with gangliosides, and the observation group was treated with simple head cooling combined with gangliosides. Observe and compare the clinical performance improvement time, the level of relevant hematological examination indexes before and after treatment, and the neonatal behavioral neurological assessment (NBNA), clinical efficacy, and adverse reactions. Results The improvement time of convulsions, disturbance of consciousness, pupil changes, hypotonia, and gastrointestinal dysfunction in the observation group was significantly lower than that in the control group (all P<0.001). After treatment, the NSE, IL-6, CK, CK-MB of the two groups of children were significantly lower than before treatment, and the serum calcium and NBNA scores were significantly higher than before treatment, and the decrease or increase in the observation group was significantly higher than that of the control Group (all P<0.001). The total effective rate of treatment of children in the observation group (82.00%) was higher than that of the control group (62.00%) (P<0.05). There were no obvious adverse reactions in both groups. Conclusion The simple head cooling combined with gangliosides in the treatment of HIE can improve the clinical symptoms, blood test index levels, and NBNA scores. The clinical effect is clear and superior to the single use of gangliosides.


Sign in / Sign up

Export Citation Format

Share Document