scholarly journals Design of Disc on Disc Wear Test Equipment Using VDI 2221 Method

Author(s):  
Dedi R.P. Cupu ◽  
◽  
Nandha Syamza ◽  

This study aims to design the build of a wear test tool or a tribometer that intends to measure the coefficient of friction and wear rate in contact materials in form of disc-on-disc. This tribometer test tool can be used in dry contact (without any intermediate material between contacts) or wet contacts (by using intermediate material between contacts such as lubricant). The application of this disc-on-disc type of tribometer is the contact that occurs between roller elements (solid cylinders) and inner rings on cylindrical rolling bearings. In this paper is used the design method of VDI 2221. The steps are to clarify the task, determine the function of structure, look for the principle of the solution and its structure, describe the variants that can be realized and give shape to the model and detail the manufacture and used. This tool is used to test components consisting of two discs where the material can be varied. The design of the surface contact side mechanism is done in a radial direction. So, the disc can rotate (rolling contact) and this test tool can be varied load and rotation. The final result of this study is an engineering document in the form of layout drawings and assembly images as well as detailed images of each component and bills of materials.

2019 ◽  
pp. 1-12
Author(s):  
C. F. Onyeanusi ◽  
S. C. Nwigbo ◽  
N. B. Anosike ◽  
C. A. Nwajude

Friction and wear control of movable parts in machines remain a critical challenge in the industries. Determination of measurement to control this often involves both the material and the lubricant. A wear test experiment using pin-on-disk apparatus to determine the wear pattern on a sample of aluminium and copper materials, lubricated with vegetable oil of palm kernel origin was conducted. Wear parameters, which include frictional coefficient, wear rate, and heat generation (temperature) were evaluated alongside thermal stress-strains on the pin on disk. Results showed that under the same conditions, the coefficient of friction reduces with the application of lubricant up to 84% and 7% for aluminium and copper respectively. The wear pattern for both materials when lubricated were evaluated and compared with dry condition to establish the relationships.


2012 ◽  
Vol 06 ◽  
pp. 534-539
Author(s):  
GAB-SU CHOI ◽  
YOUNG-SIK PYUN ◽  
JUN-HYOUNG KIM ◽  
HAK-DOO KIM ◽  
YASUTOSHI TOMINAGA ◽  
...  

In this paper, the newly developed tribometer was introduced. Ball-on-disk, pin-on-disk, small-sized journal and thrust bearings tests on friction and wear were carried out using a newly developed tribometer which is built up according to the ASTM G99. Those friction and wear test results were compared with the friction results which were approved by Korean (KOLAS) and CSM Instruments. The comparison revealed that friction characteristics and trends of three different tribometers were similar to each other. The objective of this paper is to demonstrate the capability of the newly developed tribometer. As a result, the newly developed tribometer is capable of performing friction tests using pin-on-disk, disk-on-disk, journal and thrust bearings configurations.


Biomimetics ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 54 ◽  
Author(s):  
Songbo Wei ◽  
Hongfei Shang ◽  
Chenglong Liao ◽  
Junyuan Huang ◽  
Bairu Shi

Plunger pumps are widely used in oil pumping units around the world. The water content of the wellbore is increasing along with the development progress, so the lubricating capacity of the well fluids between the plunger and barrel is decreasing correspondingly. Commonly, the substrate material of the plunger and barrel are stainless steel, and the plunger surface is usually covered with nickel-based coating. Therefore, the performance of the plunger and barrel has been affected due to poor lubrication and eccentric wear. Non-smooth surfaces have been proven to improve the tribology performance in many cases. A surface texturing plunger covered with specific dimples has been prepared by using laser surface texturing technology. The morphology of the surface texturing plunger was characterized and analyzed. The tribology performance of surface texturing plunger samples was tested using standard friction and wear test machines with oil and water lubrication, respectively. The results indicated that surface texturing could effectively reduce the coefficient of friction, and the wear resistance of the surface textured samples has been improved to some extent.


Author(s):  
A Wang ◽  
A Essner ◽  
R Klein

This paper studies the effect of contact stress on friction and wear of ultra-high molecular weight polyethylene (UHMWPE) acetabular cups by means of friction and wear joint simulator testing under serum lubrication. For a given applied load, increasing the contact stress by increasing the ball/socket radial clearance decreased both the coefficient of friction and the wear rate. Friction and wear were highly correlated. The dependence of friction on contact stress for the UHMWPE socket under serum lubrication was similar to that of semi-crystalline polymers under dry sliding. This finding indicates the occurrence of partial dry contact at asperity levels for the metal-polyethylene ball-in-socket joint under serum lubrication.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1336
Author(s):  
Jorge Caessa ◽  
Todor Vuchkov ◽  
Talha Bin Yaqub ◽  
Albano Cavaleiro

Friction and wear contribute to high energetic losses that reduce the efficiency of mechanical systems. However, carbon alloyed transition metal dichalcogenide (TMD-C) coatings possess low friction coefficients in diverse environments and can self-adapt to various sliding conditions. Hence, in this investigation, a semi-industrial magnetron sputtering device, operated in direct current mode (DC), is utilized to deposit several molybdenum-selenium-carbon (Mo-Se-C) coatings with a carbon content up to 60 atomic % (at. %). Then, the carbon content influence on the final properties of the films is analysed using several structural, mechanical and tribological characterization techniques. With an increasing carbon content in the Mo-Se-C films, lower Se/Mo ratio, porosity and roughness appeared, while the hardness and compactness increased. Pin-on-disk (POD) experiments performed in humid air disclosed that the Mo-Se-C vs. nitrile butadiene rubber (NBR) friction is higher than Mo-Se-C vs. steel friction, and the coefficient of friction (CoF) is higher at 25 °C than at 200 °C, for both steel and NBR countersurfaces. In terms of wear, the Mo-Se-C coatings with 51 at. % C showed the lowest specific wear rates of all carbon content films when sliding against steel. The study shows the potential of TMD-based coatings for friction and wear reduction sliding against rubber.


2014 ◽  
Vol 81 (7) ◽  
Author(s):  
N. W. Khun ◽  
H. Zhang ◽  
C. Y. Yue ◽  
J. L. Yang

Self-lubricating and wear resistant epoxy composites were developed via incorporation of wax-containing microcapsules. The effects of microcapsule size and content and working parameters on the tribological properties of epoxy composites were systematically investigated. The incorporation of microcapsules dramatically decreased the friction and wear of the composites from those of the epoxy. The increased microcapsule content or the incorporation of larger microcapsules decreased the friction and wear of the epoxy composites due to the larger amount of released wax lubricant via the rupture of microcapsules during the wear test. The friction of the composites decreased with increased normal load as a result of the promoted wear of the composites and the increased release of the wax lubricant.


2013 ◽  
Vol 768-769 ◽  
pp. 723-732 ◽  
Author(s):  
Jürgen Gegner ◽  
Wolfgang Nierlich

Rolling bearings in wind turbine gearboxes occasionally fail prematurely by so-called white etching cracks. The appearance of the damage indicates brittle spontaneous tensile stress induced surface cracking followed by corrosion fatigue driven crack growth. An X-ray diffraction based residual stress analysis reveals vibrations in service as the root cause. The occurrence of high local friction coefficients in the rolling contact is described by a tribological model. Depth profiles of the equivalent shear and normal stresses are compared with residual stress patterns and a relevant fracture strength, respectively. White etching crack failures are reproduced on a rolling contact fatigue test rig under increased mixed friction. Causative vibration loading is evident from residual stress measurements. Cold working compressive residual stresses are an effective countermeasure.


Author(s):  
T Akagaki ◽  
M Nakamura ◽  
T Monzen ◽  
M Kawabata

Friction and wear behaviours of rolling bearing in contaminated oil containing white-fused alumina particles were studied. The friction and wear processes were monitored using wear debris analysis, such as ferrography and spectrometric oil analysis program, and vibration analysis. Test bearing was a deep groove ball bearing (6002P5); Wear debris and worn surfaces of the bearing components were observed with a scanning electron microscope (SEM). It was found that the friction coefficient in the contaminated oil became lower by about 0.001 than that in the new oil for the large contaminants. The results of wear debris analysis showed that the large contaminants caused the high wear rate in the bearing. Three types of wear debris were commonly observed: thread-like debris, cutting chip debris, and plate-like debris. On the basis of the SEM observation results of the worn surfaces, wear mechanisms of these wear debris were discussed. The results of vibration analysis showed that the probability density function of vibration waveform was normal distribution in both the new and contaminated oils. In the contaminated oil, it changed depending on the contaminant size and the runtime, i.e. the progress of wear in the bearing. The result of wear debris analysis was related to that of vibration analysis and discussed.


Author(s):  
В.Ю. Фоминский ◽  
В.Н. Неволин ◽  
Д.В. Фоминский ◽  
Р.И. Романов ◽  
М.Д. Грицкевич

The results of a comparative study of the friction and wear of MoSx and MoSex thin film coatings that was carried out in an oxidizing medium (a mixture of argon and air) at a temperature of -100°C are presented. The films were obtained by pulsed laser deposition from MoS2, MoSe2, and Mo targets in vacuum and H2S. It was established that Se-containing coatings significantly exceeded the S-containing coatings in terms of wear resistance and provided a friction coefficient of ~ 0.09. The properties of MoSx films depended on the S concentration, which determines the local packing of atoms in the amorphous structure of the film. The coefficient of friction for MoS3 films after running-in turned out to be half as much as that for MoS2 films, and its value was 0.08.


2013 ◽  
Vol 683 ◽  
pp. 90-93 ◽  
Author(s):  
Koshiro Mizobe ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
Edson Costa Santos ◽  
Yuji Kashima ◽  
...  

Polyetheretherketone (PEEK) is a tough semi-crystalline thermoplastic polymer with excellent mechanical properties. While abilities of polyphenylenesulfide (PPS) are similar to PEEK, former material cost was lower than later. Polytetrafluoroethylene (PTFE) is well known because of its low friction coefficient and self lubrication ability. The objective of this study is to observe the friction coefficient of hybrid bearings, PTFE retainer sandwiched with PPS-races or PEEK-races. Rolling contact fatigue tests were performed and in situ friction forces wear measured. It is concluded that the PTFE retainer reduced friction coefficient.


Sign in / Sign up

Export Citation Format

Share Document