scholarly journals PRMT6 physically associates with nuclear factor Y to regulate photoperiodic flowering in Arabidopsis

aBIOTECH ◽  
2021 ◽  
Author(s):  
Pingxian Zhang ◽  
Xiulan Li ◽  
Yifan Wang ◽  
Weijun Guo ◽  
Sadaruddin Chachar ◽  
...  

AbstractThe timing of floral transition is critical for reproductive success in flowering plants. In long-day (LD) plant Arabidopsis, the floral regulator gene FLOWERING LOCUS T (FT) is a major component of the mobile florigen. FT expression is rhythmically activated by CONSTANS (CO), and specifically accumulated at dusk of LDs. However, the underlying mechanism of adequate regulation of FT transcription in response to day-length cues to warrant flowering time still remains to be investigated. Here, we identify a homolog of human protein arginine methyltransferases 6 (HsPRMT6) in Arabidopsis, and confirm AtPRMT6 physically interacts with three positive regulators of flowering Nuclear Factors YC3 (NF-YC3), NF-YC9, and NF-YB3. Further investigations find that AtPRMT6 and its encoding protein accumulate at dusk of LDs. PRMT6-mediated H3R2me2a modification enhances the promotion of NF-YCs on FT transcription in response to inductive LD signals. Moreover, AtPRMT6 and its homologues proteins AtPRMT4a and AtPRMT4b coordinately inhibit the expression of FLOWERING LOCUS C, a suppressor of FT. Taken together, our study reveals the role of arginine methylation in photoperiodic pathway and how the PRMT6-mediating H3R2me2a system interacts with NF-CO module to dynamically control FT expression and facilitate flowering time.

Science ◽  
2018 ◽  
Vol 360 (6392) ◽  
pp. 1014-1017 ◽  
Author(s):  
Min Chen ◽  
Steven Penfield

Plants integrate seasonal signals, including temperature and day length, to optimize the timing of developmental transitions. Seasonal sensing requires the activity of two proteins, FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT), that control certain developmental transitions in plants. During reproductive development, the mother plant uses FLC and FT to modulate progeny seed dormancy in response to temperature. We found that for regulation of seed dormancy, FLC and FT function in opposite configuration to how those same genes control time to flowering. For seed dormancy, FT regulates seed dormancy through FLC gene expression and regulates chromatin state by activating antisense FLC transcription. Thus, in Arabidopsis the same genes controlled in opposite format regulate flowering time and seed dormancy in response to the temperature changes that characterize seasons.


2001 ◽  
Vol 356 (1415) ◽  
pp. 1761-1767 ◽  
Author(s):  
Jo Putterill

Successful sexual reproduction in plants relies upon the strict coordination of flowering time with favourable seasons of the year. One of the most important seasonal cues for the model plant Arabidopsis thaliana ( Arabidopsis ) is day length. Genes influencing flowering time in Arabidopsis have been isolated, some of which are involved in the perception and signalling of day length. This review discusses recent progress that has been made in understanding how Arabidopsis integrates environmental and internal signals to ensure a sharp transition to flowering and new insights on the role of the circadian clock in controlling the expression of genes that promote flowering in response to day length.


2016 ◽  
Author(s):  
Chamindika L. Siriwardana ◽  
Nerina Gnesutta ◽  
Roderick W. Kumimoto ◽  
Daniel S. Jones ◽  
Zachary A. Myers ◽  
...  

AbstractPhotoperiod dependent flowering is one of several mechanisms used by plants to initiate the developmental transition from vegetative growth to reproductive growth. The NUCLEAR FACTOR Y (NF-Y) transcription factors are heterotrimeric complexes composed of NF-YA and histone-fold domain (HFD) containing NF-YB/NF-YC, that initiate photoperiod-dependent flowering by cooperatively interacting with CONSTANS (CO) to drive the expression of FLOWERING LOCUS T (FT). This involves NF-Y and CO binding at distal CCAAT and proximal “CORE” elements, respectively, in the FT promoter. While this is well established for the HFD subunits, there remains some question over the potential role of NF-YA as either positive or negative regulators of this process. Here we provide strong support, in the form of genetic and biochemical analyses, that NF-YA, in complex with NF-YB/NF-YC proteins, can directly bind the distal CCAAT box in the FT promoter and are positive regulators of flowering in an FT-dependent manner.Author SummaryFor plants to have reproductive success, they must time their flowering with the most beneficial biotic and abiotic environmental conditions - after all, reproductive success would likely be low if flowers developed when pollinators were not present or freezing temperatures were on the horizon. Proper timing mechanisms for flowering vary significantly between different species, but can be connected to a variety of environmental cues, including water availability, temperature, and day length. Numerous labs have studied the molecular aspects of these timing mechanisms and discovered that many of these pathways converge on the gene FLOWERING LOCUS T (FT). This means that understanding precisely how this gene is regulated can teach us a lot about many plant species in both natural and agricultural settings. In the current study, we focus on day length as an essential cue for flowering in the plant species Arabidopsis thaliana. We further unravel the complexity of FT regulation by clarifying the roles of NUCLEAR FACTOR Y genes in day length perception.


2021 ◽  
Vol 12 ◽  
Author(s):  
Geoffrey Thomson ◽  
Lulu Zhang ◽  
Jiangqi Wen ◽  
Kirankumar S. Mysore ◽  
Joanna Putterill

Flowering time influences the yield and productivity of legume crops. Medicago truncatula is a reference temperate legume that, like the winter annual Arabidopsis thaliana, shows accelerated flowering in response to vernalization (extended cold) and long-day (LD) photoperiods (VLD). However, unlike A. thaliana, M. truncatula appears to lack functional homologs of core flowering time regulators CONSTANS (CO) and FLOWERING LOCUS C (FLC) which act upstream of the mobile florigen FLOWERING LOCUS T (FT). Medicago truncatula has three LD-induced FT-like genes (MtFTa1, MtFTb1, and MtFTb2) with MtFTa1 promoting M. truncatula flowering in response to VLD. Another photoperiodic regulator in A. thaliana, FE, acts to induce FT expression. It also regulates the FT transport pathway and is required for phloem development. Our study identifies a M. truncatula FE homolog Medtr6g444980 (MtFE) which complements the late flowering fe-1 mutant when expressed from the phloem-specific SUCROSE-PROTON SYMPORTER 2 (SUC2) promoter. Analysis of two M. truncatula Tnt1 insertional mutants indicate that MtFE promotes flowering in LD and VLD and growth in all conditions tested. Expression of MtFTa1, MtFTb1, and MtFTb2 are reduced in Mtfe mutant (NF5076), correlating with its delayed flowering. The NF5076 mutant plants are much smaller than wild type indicating that MtFE is important for normal plant growth. The second mutant (NF18291) displays seedling lethality, like strong fe mutants. We searched for mutants in MtFTb1 and MtFTb2 identifying a Mtftb2 knock out Tnt1 mutant (NF20803). However, it did not flower significantly later than wild type. Previously, yeast-two-hybrid assays (Y2H) suggested that Arabidopsis FE interacted with CO and NUCLEAR FACTOR-Y (NF-Y)-like proteins to regulate FT. We found that MtFE interacts with CO and also M. truncatula NF-Y-like proteins in Y2H experiments. Our study indicates that despite the apparent absence of a functional MtCO-like gene, M. truncatula FE likely influences photoperiodic FT expression and flowering time in M. truncatula via a partially conserved mechanism with A. thaliana.


Author(s):  
Paul Vollrath ◽  
Harmeet S. Chawla ◽  
Sarah V. Schiessl ◽  
Iulian Gabur ◽  
HueyTyng Lee ◽  
...  

Abstract Key message A novel structural variant was discovered in the FLOWERING LOCUS T orthologue BnaFT.A02 by long-read sequencing. Nested association mapping in an elite winter oilseed rape population revealed that this 288 bp deletion associates with early flowering, putatively by modification of binding-sites for important flowering regulation genes. Abstract Perfect timing of flowering is crucial for optimal pollination and high seed yield. Extensive previous studies of flowering behavior in Brassica napus (canola, rapeseed) identified mutations in key flowering regulators which differentiate winter, semi-winter and spring ecotypes. However, because these are generally fixed in locally adapted genotypes, they have only limited relevance for fine adjustment of flowering time in elite cultivar gene pools. In crosses between ecotypes, the ecotype-specific major-effect mutations mask minor-effect loci of interest for breeding. Here, we investigated flowering time in a multiparental mapping population derived from seven elite winter oilseed rape cultivars which are fixed for major-effect mutations separating winter-type rapeseed from other ecotypes. Association mapping revealed eight genomic regions on chromosomes A02, C02 and C03 associating with fine modulation of flowering time. Long-read genomic resequencing of the seven parental lines identified seven structural variants coinciding with candidate genes for flowering time within chromosome regions associated with flowering time. Segregation patterns for these variants in the elite multiparental population and a diversity set of winter types using locus-specific assays revealed significant associations with flowering time for three deletions on chromosome A02. One of these was a previously undescribed 288 bp deletion within the second intron of FLOWERING LOCUS T on chromosome A02, emphasizing the advantage of long-read sequencing for detection of structural variants in this size range. Detailed analysis revealed the impact of this specific deletion on flowering-time modulation under extreme environments and varying day lengths in elite, winter-type oilseed rape.


2019 ◽  
Vol 62 (1) ◽  
Author(s):  
Soon Ae Sim ◽  
Su Gyeong Woo ◽  
Dae Yeon Hwang ◽  
Jin-Hong Kim ◽  
Seung Sik Lee ◽  
...  

Abstract Flowering at the right time is essential for maximum reproductive fitness. In Arabidopsis thaliana, the CONSTANS (CO) protein facilitates the transition from the vegetative phase to the reproductive phase under long-day conditions. The formation of heterodimeric complexes between CO and DNA binding domain-containing transcription factors is important for the induction of day length-dependent flowering. Here, we report a myb-like helix turn helix (HTH) transcriptional regulator family protein as a new modulator of floral transition, which we have named FLOWERING HTH1 (FHTH1). We isolated FHTH1 as a CO-interacting protein by a yeast two-hybrid screen using an Arabidopsis transcription factor library. Our analysis showed that FHTH1 presented in the nucleus and the FHTH1-CO complex was formed in the same subcellular location. We also observed the expression of a FHTH1:GUS construct in the leaf vasculature, where CO exists. Transgenic plants overexpressing FHTH1 fused with the plant-specific repression domain SRDX showed a delayed flowering phenotype in long days, resembling the phenotype of the co mutant. Our results suggest that FHTH1 may contribute to CO-mediated photoperiodic flowering regulation.


2005 ◽  
Vol 280 (23) ◽  
pp. 21700-21705 ◽  
Author(s):  
Waraporn Komyod ◽  
Uta-Maria Bauer ◽  
Peter C. Heinrich ◽  
Serge Haan ◽  
Iris Behrmann

Transcription factors of the STAT (signal transducer and activator of transcription) family are important in signal transduction of cytokines. They are subject to post-translational modification by phosphorylation on tyrosine and serine residues. Recent evidence suggested that STATs are methylated on a conserved arginine residue within the N-terminal region. STAT arginine methylation has been described to be important for STAT function and loss of arginine methylation was discussed to be involved in interferon resistance of cancer cells. Here we provide several independent lines of evidence indicating that the issue of arginine methylation of STATs has to be reassessed. First, we show that treatment of melanoma and fibrosarcoma cells with inhibitors used to suppress methylation (N-methyl-2-deoxyadenosine, adenosine, dl-homocysteine) had profound and rapid effects on phosphorylation of STAT1 and STAT3 but also on p38 and Erk signaling cascades which are known to cross-talk with the Jak/STAT pathway. Second, we show that anti-methylarginine antibodies did not precipitate specifically STAT1 or STAT3. Third, we show that mutation of Arg31 to Lys led to destabilization of STAT1 and STAT3, implicating an important structural role of Arg31. Finally, purified catalytically active protein arginine methyltransferases (PRMT1, -2, -3, -4, and -6) did not methylate STAT proteins, and cotransfection with PRMT1 did not affect STAT1-controlled reporter gene activity. Taken together, our data suggest the absence of arginine methylation of STAT1 and STAT3.


2004 ◽  
Vol 379 (2) ◽  
pp. 283-289 ◽  
Author(s):  
Marie-Chloé BOULANGER ◽  
Tina Branscombe MIRANDA ◽  
Steven CLARKE ◽  
Marco di FRUSCIO ◽  
Beat SUTER ◽  
...  

The role of arginine methylation in Drosophila melanogaster is unknown. We identified a family of nine PRMTs (protein arginine methyltransferases) by sequence homology with mammalian arginine methyltransferases, which we have named DART1 to DART9 (Drosophilaarginine methyltransferases 1–9). In keeping with the mammalian PRMT nomenclature, DART1, DART4, DART5 and DART7 are the putative homologues of PRMT1, PRMT4, PRMT5 and PRMT7. Other DART family members have a closer resemblance to PRMT1, but do not have identifiable homologues. All nine genes are expressed in Drosophila at various developmental stages. DART1 and DART4 have arginine methyltransferase activity towards substrates, including histones and RNA-binding proteins. Amino acid analysis of the methylated arginine residues confirmed that both DART1 and DART4 catalyse the formation of asymmetrical dimethylated arginine residues and they are type I arginine methyltransferases. The presence of PRMTs in D. melanogaster suggest that flies are a suitable genetic system to study arginine methylation.


2017 ◽  
Vol 114 (38) ◽  
pp. 10101-10106 ◽  
Author(s):  
Kanishk Jain ◽  
Cyrus Y. Jin ◽  
Steven G. Clarke

Arginine methylation on histones is a central player in epigenetics and in gene activation and repression. Protein arginine methyltransferase (PRMT) activity has been implicated in stem cell pluripotency, cancer metastasis, and tumorigenesis. The expression of one of the nine mammalian PRMTs, PRMT5, affects the levels of symmetric dimethylarginine (SDMA) at Arg-3 on histone H4, leading to the repression of genes which are related to disease progression in lymphoma and leukemia. Another PRMT, PRMT7, also affects SDMA levels at the same site despite its unique monomethylating activity and the lack of any evidence for PRMT7-catalyzed histone H4 Arg-3 methylation. We present evidence that PRMT7-mediated monomethylation of histone H4 Arg-17 regulates PRMT5 activity at Arg-3 in the same protein. We analyzed the kinetics of PRMT5 over a wide range of substrate concentrations. Significantly, we discovered that PRMT5 displays positive cooperativity in vitro, suggesting that this enzyme may be allosterically regulated in vivo as well. Most interestingly, monomethylation at Arg-17 in histone H4 not only raised the general activity of PRMT5 with this substrate, but also ameliorated the low activity of PRMT5 at low substrate concentrations. These kinetic studies suggest a biochemical explanation for the interplay between PRMT5- and PRMT7-mediated methylation of the same substrate at different residues and also suggest a general model for regulation of PRMTs. Elucidating the exact relationship between these two enzymes when they methylate two distinct sites of the same substrate may aid in developing therapeutics aimed at reducing PRMT5/7 activity in cancer and other diseases.


Sign in / Sign up

Export Citation Format

Share Document