scholarly journals Water Stabilization of Clay Bricks with Improved Tannin and Iron Mixes

Author(s):  
Yi Du ◽  
Coralie Brumaud ◽  
Guillaume Habert

Weak water resistance is a big obstacle for clay materials to overcome in modern construction industry. Compared to the hydraulic stabilized additives, bio-additives have a lower carbon footprint and have been used in many vernacular construction techniques to immobilize clay. In this work, the traditional recipes of tannin and iron have been revisited, in particular, the question of pH and iron solubility has been explored. Oak tannin and FeCl3 were chosen and their influence on the properties of clay materials in terms of rheological properties, compressive strength, and water resistance were characterized in the lab. Based on the results, tannin can reduce the yield stress of paste while with the addition of FeCl3, the yield stress of tannin dispersed pastes increased to a value similar to the reference sample but lower than the value contain only FeCl3. The increase was attributed to the complex reaction between tannin and Fe3+. The iron-tannin complexes can also increase the samples’ strength and water resistance. Although the complexes did not change the hydrophilic properties of the samples’ surface, they prevent the ingression of water. These results are very promising as they allow the production of a fluid earth material that is water-resistant. This opens a wide range of application potentials and can help to mainstream earth materials in construction.

1997 ◽  
Vol 11 (04) ◽  
pp. 129-138 ◽  
Author(s):  
V. Sa-Yakanit ◽  
V. D. Lakhno ◽  
Klaus Haß

The generalized path integral approach is applied to calculate the ground state energy and the effective mass of an electron-plasmon interacting system for a wide range of densities. It is shown that in the self-consistent approximation an abrupt transition between the weak coupling and the strong coupling region of interaction exists. The transition occurs at low electron densities according to a value of 418 for rs, when Wigner crystallization is possible. For densities of real metals, the electron bandwidth is calculated and a comparison with experimental results is given.


2021 ◽  
Vol 13 (9) ◽  
pp. 4974
Author(s):  
Obafemi A. P. Olukoya

While a growing number of researchers have provided series of tough critiques of the typology-led heritage value assessment over the recent years, the impacts have been constrained by the continued obsession with expanding the list of the predetermined value typologies rather than escaping its limitations. While these sustained debates have provided important insights, this article argues that operationalizing these predetermined ‘one-size-fits-all’ value typologies is symptomatic of a number of shortcomings, especially in the context of capturing the pluralities of values in contextualized heritage such as vernacular architecture. It also often undermines inclusivity and participation in the valuing processes. However, rather than simply rejecting the values-based paradigm, this article proposes a conceptual value assessment framework that is informed by the theorization of vernacular architecture as a contextualized heritage. The proposed Vernacular Value Model (VVM) puts forward the ‘when(s)’ and ‘how(s)’ of amalgamating both technical and normative processes to capture the range of contextual values present in built vernacular heritage. To this end, this article posits that by drawing on such a proposed flexible framework, the conservation strategy for built vernacular heritage can be propagated as an inclusive and participatory process which captures the wide range of values for a more sustainable practices for conservation.


2021 ◽  
Author(s):  
SAGAR M. DOSHI, SAGAR M. DOSHI, ◽  
NITHINKUMAR MANOHARAN ◽  
BAZLE Z. (GAMA) HAQUE, ◽  
JOSEPH DEITZEL ◽  
JOHN W. GILLESPIE, JR.

Epoxy resin-based composite panels used for armors may be subjected to a wide range of operating temperatures (-55°C to 76°C) and high strain rates on the order of 103-104 s-1. Over the life cycle, various environmental factors also affect the resin properties and hence influence the performance of the composites. Therefore, it is critical to determine the stress-strain behavior of the epoxy resin over a wide range of strain rates and temperatures for accurate multi-scale modeling of composites and to investigate the influence of environmental aging on the resin properties. Additionally, the characterization of key mechanical properties such as yield stress, modulus, and energy absorption (i.e. area under the stress-strain curve) at varying temperatures and moisture can provide critical data to calculate the material operating limits. In this study, we characterize mechanical properties of neat epoxy resin, SC-15 (currently used in structural armor) and RDL-RDC using uniaxial compression testing. RDL-RDC, developed by Huntsman Corporation, has a glass transition temperature of ~ 120°C, compared to ~ 85°C of SC-15. A split Hopkinson pressure bar is used for high strain rate testing. Quasistatic testing is conducted using a screw-driven testing machine (Instron 4484) at 10-3 s-1 and 10-1 s-1 strain rates and varying temperatures. The yield stress is fit to a modified Eyring model over the varying strain rates at room temperature. For rapid investigation of resistance to environmental aging, accelerated aging tests are conducted by immersing the specimens in 100°C water for 48 hours. Specimens are conditioned in an environmental chamber at 76 °C and 88% RH until they reach equilibrium. Tests are then conducted at five different temperatures from 0°C to 95°C, and key mechanical properties are then plotted vs. temperature. The results presented are an important step towards developing a methodology to identify environmental operating conditions for composite ground vehicle applications.


2021 ◽  
Vol 869 (1) ◽  
pp. 012007
Author(s):  
A Yuslan ◽  
N Nasir ◽  
H Suhaimi ◽  
A Arshad ◽  
N W Rasdi

Abstract Copepods with a wide range of sizes, species, and nutritional compositions are preferred as live food for rearing of Betta splendens larvae. This research focuses on evaluating the efficiency of copepod enrichment diets in improving the coloration and feeding rate of B. splendens. Copepod were enriched with Chlorella sp. (T1), capsicum (T2), mixed vegetable (carrot + spinach), (T3), yeast (T4) and rice bran (T5) in 24 hours prior the feeding tests. As a result, proximate analysis of enriched-copepods showed that T1 (70.88±0.41) has highest protein content and T5 (22.01±0.59) has the highest lipid content. The specific growth rate and survival rate of B. splendens was highest in the treatment T1 (2.56±0.07%; 91.11±1.92%) and followed closely by T3 (2.49±0.51%; 85.55±8.39%). Feeding rate, T3 (70.08±3.88%) presented highest rate compared to other treatments. The different enrichment diets used were significantly impact the coloration test on body of L* value (P=0.001, P<0.05), T3 (66.11±3.60) appeared darker in color in contrast to others. As for a* value, the coloration was not impacted with the use of different enrichment on copepods (P=0.158, P>0.05) was detected for T1 (2.84±0.73) that gave a redder shade than other treatments did. T3 (2.40±0.30) exerted a more yellowish shade than the rest for b* value with a significant difference (P=0.015, P<0.05). The current study demonstrates that, rice bran, capsicum and mixed vegetable enrichment (carrot and spinach) have the potential to be an effective means of increasing B. splendens coloring and feeding rate. This potential diet can be further used as a substitution to artificial foods in producing sustainable culture of ornamental fish in the aquaculture industry.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 604
Author(s):  
Anna-Marie Lauermannová ◽  
Ondřej Jankovský ◽  
Michal Lojka ◽  
Ivana Faltysová ◽  
Julie Slámová ◽  
...  

In this study, the combined effect of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (OMWCNTs) on material properties of the magnesium oxychloride (MOC) phase 5 was analyzed. The selected carbon-based nanoadditives were used in small content in order to obtain higher values of mechanical parameters and higher water resistance while maintaining acceptable price of the final composites. Two sets of samples containing either 0.1 wt. % or 0.2 wt. % of both nanoadditives were prepared, in addition to a set of reference samples without additives. Samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and energy dispersive spectroscopy, which were used to obtain the basic information on the phase and chemical composition, as well as the microstructure and morphology. Basic macro- and micro-structural parameters were studied in order to determine the effect of the nanoadditives on the open porosity, bulk and specific density. In addition, the mechanical, hygric and thermal parameters of the prepared nano-doped composites were acquired and compared to the reference sample. An enhancement of all the mentioned types of parameters was observed. This can be assigned to the drop in porosity when GO and OMWCNTs were used. This research shows a pathway of increasing the water resistance of MOC-based composites, which is an important step in the development of the new generation of construction materials.


1977 ◽  
Vol 57 (1) ◽  
pp. 1-8
Author(s):  
A. R. MACK ◽  
E. J. BRACH

Samples of granular materials illuminated with a 20 m Watt (average power) laser energy source at a wavelength of 337.1 nm differed in their fluorescence spectra over a wide range of wavelengths from approximately 380 to 660 nm. The fluorescent yield was usually higher with increased fineness of grain size and with increased concentration of clay (> 10% of under 2-μ grain size). However, sandy soils containing a low content of clay (i.e. < 10%) had a higher yield than the regression estimate. Modifying the fluorosensor for greater resolution at a higher energy level (1 nm bandwidth and 25 m Watt average power) resulted in eight discernible peaks between 384 and 440 nm, at 486 and at 550 nm. Overall fluorescence was markedly increased by removal of Fe coatings from the surface of the grains by a dithionite treatment. Thus, laser-induced fluorescence spectra obtained from various partially vegetated land areas by airborne laser fluorosensing may be influenced by the granular material associated with non-vegetated "open" areas.


1965 ◽  
Vol 43 (8) ◽  
pp. 2312-2318 ◽  
Author(s):  
J. M. Beeckmans

Smoluchowski's equations for the coagulation of uncharged aerosol particles were programmed for solution by electronic computer. Terms representing differential sedimentation, turbulence, and mean aggregate density in solid aerosols were included. The effect of heterogeneity in the particle-size distribution of the aerosols on their rate of coagulation was illustrated by means of a slip-corrected coagulation factor Fc, which assumes a value of unity in all non-turbulent homogeneous aerosols. Curves of Fc vs. σg, the geometrical standard deviation, were calculated for aerosols of various mean particle-size. The effects due to turbulence, and to differential sedimentation, were illustrated in a similar manner. It was also found that the process of coagulation gives rise to a degree of dispersion which is independent of the original dispersion parameter, and depends only slightly on the mean particle-size of the aerosol over a wide range of particle-sizes. In the particle-size range in which differential sedimentation is inappreciable, the relatively constant value of the dispersion parameter implies that heterogeneous aerosols must obey the simplified integrated form of Smoluchowski's equation, which is applicable to homogeneous aerosols. The coagulation constant exceeds that predicted by the simple theory by about 10% for liquid aerosols of 0.1 μ or less.


SPE Journal ◽  
2017 ◽  
Vol 22 (06) ◽  
pp. 1893-1914 ◽  
Author(s):  
Weiwei Wu ◽  
Mukul M. Sharma

Summary Fluid flow in unpropped and natural fractures is critical in many geophysical processes and engineering applications. The flow conductivity in these fractures depends on their closure under stress, which is a complicated mechanical process that is challenging to model. The challenges come from the deformation interaction and the close coupling among the fracture geometry, pressure, and deformation, making the closure computationally expensive to describe. Hence, most of the previous models either use a small grid system or disregard deformation interaction or plastic deformation. In this study, a numerical model is developed to simulate the stress-driven closure and the conductivity for fractures with rough surfaces. The model integrates elastoplastic deformation and deformation interaction, and can handle contact between heterogeneous surfaces. Computation is optimized and accelerated by use of an algorithm that combines the conjugate-gradient (CG) method and the fast-Fourier-transform (FFT) technique. Computation time is significantly reduced compared with traditional methods. For example, a speedup of five orders of magnitude is obtained for a grid size of 512 × 512. The model is validated against analytical problems and experiments, for both elastic-only and elastoplastic scenarios. It is shown that interaction between asperities and plastic deformation cannot be ignored when modeling fracture closure. By applying our model, roughness and yield stress are found to have a larger effect on fracture closure and compliance than Young's modulus. Plastic deformation is a dominant contributor to closure and can make up more than 70% of the total closure in some shales. The plastic deformation also significantly alters the relationship between fracture stiffness and conductivity. Surfaces with reduced correlation length produce greater conductivity because of their larger apertures, despite more fracture closure. They have a similar fraction of area in contact as compared with surfaces with longer fracture length, but the pattern of area in contact is more scattered. Contact between heterogeneous surfaces with more soft minerals leads to increased plastic deformation and fracture closure, and results in lower fracture conductivity. Fracture compliance appears not to be as sensitive to the distribution pattern of hard and soft minerals. Our model compares well with experimental data for fracture closure, and can be applied to unpropped or natural fractures. These results are obtained for a wide range of conditions: surface profile following Gaussian distribution with correlation length of 50 µm and roughness of 4 to 50 µm, yield stress of 100 to 1500 MPa, and Young's modulus of 20 to 60 GPa. The results may be different for situations outside this range of parameters.


2000 ◽  
Vol 1 (3) ◽  
pp. 485-506 ◽  
Author(s):  
Kathy Peiss

Beauty and business seem opposite terms but in fact have had an important and consequential relationship that business historians are only now exploring. This paper sketches several major themes and approaches to the topic. The first is the emergence of a large sector of the economy devoted to selling beauty aids, fashions, bodily care, and style to American women and men. Another is the deployment of beauty as a business strategy—in creating brands, sales, and marketing; in managing the workplace; and in projecting corporate identities. A third considers the sale of beauty itself, as a value added and attached to a wide range of goods, from art to bodies. These broad approaches suggest new directions for future research.


2018 ◽  
Vol 4 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Minhyeok Tak ◽  
Michael P. Sam ◽  
Steven J. Jackson

Purpose Sport match-fixing has emerged as a complex global problem. The purpose of this paper is twofold. First, it critically reviews how match-fixing is typified as a policy problem. Second, it advances an analysis of the legal framework and regulatory system for sports betting as a causal source for “routinized” match-fixing. Design/methodology/approach This study extracts and synthesises (cross-national) materials from policies, media releases and scholarly works on the subject of match-fixing and sports betting. The analysis is framed by the contrasts between rational choice and sociological institutionalist approaches. Findings Match-fixing is typically attributed to: criminal organisations and illegal sports betting; vulnerable individuals; and failure of governance on the part of sports organisations. Each cause holds assumptions of utility-maximising actors and it is argued that due consideration be given to the fundamental risks inherent in legal sports betting regimes. Research limitations/implications Match-fixing in sport is a recurrent social problem, transcending national boundaries and involving a wide range of actors and, sporting disciplines and levels of competition. Within such an environment, it may matter little how strong the incentive structures and education programmes are, when betting on human beings is both normatively and cognitively advanced as a value and institutionally permitted as a practice. Originality/value This paper argues that legal betting regimes paradoxically contribute to routinised match-fixing because: for betting customers there is no qualitative, ethical difference between legal and illegal operators; and legalisation serves to normalise and legitimate the view of athletes as objects for betting (like cards or dice).


Sign in / Sign up

Export Citation Format

Share Document