scholarly journals Meteorological Drought Assessment in Sharjah, UAE Using Drought Indices

Author(s):  
Mhamd S. Oyounalsoud ◽  
◽  
Arwa Najah ◽  
Abdullah G. Yilmaz ◽  
Mohamed Abdallah ◽  
...  

Drought is a natural disaster that significantly affects environmental and socio-economic conditions. It occurs when there is a period of below average precipitation in a region, and it results in water supply shortages affecting various sectors and life adversely. Droughts impact the ecosystems, crop production, and erode livelihoods. Monitoring drought is essential especially in the United Arab Emirates (UAE) due to the scarcity of rainfall for an extended period of time. In this study, drought is assessed in Sharjah UAE using monthly precipitation and average temperature data recorded for 35 years (1981-2015) at the Sharjah International Airport. The standardized precipitation Index (SPI), and the Reconnaissance Drought Index (RDI) are selected to predict future droughts in the region. SPI and RDI are fitted to the statistical distribution functions (gamma and lognormal) in an annual time scale and then, a trend analysis of index values is carried out using Mann-Kendal test. The correlation between SPI and RDI indices was found to be high where both showed high drought frequencies and a tendency to get drier over time, thus indicating the need of appropriate drought management and monitoring.

2020 ◽  
Vol 19 (2) ◽  
pp. 18-27
Author(s):  
Worapong Lohpaisankrit ◽  
◽  
Jessada Techamahasaranont ◽  

Predicting drought occurrence accurately still remains a challenging task. To fill research gaps, this study identified and analysed meteorological and hydrological droughts using the Standardized Precipitation Index (SPI) and Streamflow Drought Index (SDI), respectively, in the upper Lam Pao watershed in Thailand. The study also focused on investigating the relationships between both droughts. The SPI and SDI were computed based on observed long-term precipitation and streamflow data during the period of 1988-2017. The drought analysis was carried out by using the R packages. The location, period and severity level of drought events were graphically presented. On the basis of trend analysis, the SPI series showed slightly increasing trends, whereas no trend was found for the SDI series. This implied that the hydrological drought was influenced by not only precipitation but also other factors. The key findings indicated that there was a positive relationship between meteorological and hydrological droughts. In addition, there was a specific lag time, which may depend on physical characteristics of a basin, in drought propagating from meteorological drought to hydrological drought. Overall, the drought indices can help to predict hydrological drought events, which could be valuable information for drought monitoring and early warning systems.


2014 ◽  
Vol 46 (3) ◽  
pp. 463-476 ◽  
Author(s):  
Siti Nazahiyah Rahmat ◽  
Niranjali Jayasuriya ◽  
Muhammed Bhuiyan

Droughts adversely impact rural and urban communities, industry, primary production and, thus, a country's economy. Drought monitoring is directed to detecting the onset, persistence and severity of the drought. In this study, meteorological drought indices such as the Standardized Precipitation Index (SPI), the Reconnaissance Drought Index (RDI) and deciles were assessed to investigate how well these indices reflect drought conditions in Victoria, Australia. The Theory of Runs was also used to identify the drought deficit. The study uses 55 years (1955–2010) of monthly precipitation and reference evapotranspiration data for five selected meteorological stations in Victoria, Australia. Results show that drought characterization using SPI and RDI provides a standardized classification of severity thus exhibiting advantages over deciles. As RDI considers both rainfall and potential evapotranspiration in calculations, it could be sensitive to climatic variability. For characterizing agricultural droughts, the application of the RDI is recommended. The use of the SPI was shown to be satisfactory for assessing and monitoring meteorological droughts. The SPI was also successful in detecting the onset and the end of historical droughts for the selected events.


2016 ◽  
Vol 42 (1) ◽  
pp. 67 ◽  
Author(s):  
M. Peña-Gallardo ◽  
S. R. Gámiz-Fortís ◽  
Y. Castro-Diez ◽  
M. J. Esteban-Parra

The aim of this paper is the analysis of the detection and evolution of droughts occurred in Andalusia for the period 1901-2012, by applying three different drought indices: the Standardized Precipitation Index (SPI), the Standardized Precipitation and Evapotranspiration Index (SPEI) and the Standardized Drought-Precipitation Index (IESP), computed for three time windows from the initial period 1901-2012. This analysis has been carried out after a preliminary study of precipitation trends with the intention of understanding the precipitation behaviour, because this climatic variable is one of the most important in the study of extreme events. The specific objectives of this study are: (1) to investigate and characterize the meteorological drought events, mainly the most important episodes in Andalusia; (2) to provide a global evaluation of the capacities of the three different considered indices in order to characterize the drought in a heterogeneous climatically territory; and (3) to describe the temporal behaviour of precipitation and drought indices series in order to establish the general characteristics of their evolution in Andalusia. The results have shown that not all the indices respond similarly identifying the intensity and duration of dry periods in this kind of region where geographical and climatic variability is one of the main elements to be considered.


2019 ◽  
Vol 50 (3) ◽  
pp. 901-914 ◽  
Author(s):  
Hsin-Fu Yeh

Abstract Numerous drought index assessment methods have been developed to investigate droughts. This study proposes a more comprehensive assessment method integrating two drought indices. The Standardized Precipitation Index (SPI) and the Streamflow Drought Index (SDI) are employed to establish an integrated drought assessment method to study the trends and characteristics of droughts in southern Taiwan. The overall SPI and SDI values and the spatial and temporal distributions of droughts within a given year (November to October) revealed consistent general trends. Major droughts occurred in the periods of 1979–1980, 1992–1993, 1994–1995, and 2001–2003. According to the results of the Mann–Kendall trend test and the Theil–Sen estimator analysis, the streamflow data from the Sandimen gauging station in the Ailiao River Basin showed a 30% decrease, suggesting increasing aridity between 1964 and 2003. Hence, in terms of water resources management, special attention should be given to the Ailiao River Basin. The integrated analysis showed different types of droughts occurring in different seasons, and the results are in good agreement with the climatic characteristics of southern Taiwan. This study suggests that droughts cannot be explained fully by the application of a single drought index. Integrated analysis using multiple indices is required.


2009 ◽  
Vol 48 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Bradfield Lyon ◽  
Lareef Zubair ◽  
Vidhura Ralapanawe ◽  
Zeenas Yahiya

Abstract In regions of climatic heterogeneity, finescale assessment of drought risk is needed for policy making and drought management, mitigation, and adaptation. The relationship between drought relief payments (a proxy for drought risk) and meteorological drought indicators is examined through a retrospective analysis for Sri Lanka (1960–2000) based on records of district-level drought relief payments and a dense network of 284 rainfall stations. The standardized precipitation index and a percent-of-annual-average index for rainfall accumulated over 3, 6, 9, and 12 months were used, gridded to a spatial resolution of 10 km. An encouraging correspondence was identified between the spatial distribution of meteorological drought occurrence and historical drought relief payments at the district scale. Time series of drought indices averaged roughly over the four main climatic zones of Sri Lanka showed statistically significant (p < 0.01) relationships with the occurrence of drought relief. The 9-month cumulative drought index provided the strongest relationships overall, although 6- and 12-month indicators provided generally similar results. Some cases of appreciable drought without corresponding relief payments could be attributed to fiscal pressures, as during the 1970s. Statistically significant relationships between drought indicators and relief payments point to the potential utility of meteorological drought assessments for disaster risk management. In addition, the study provides an empirical approach to testing which meteorological drought indicators bear a statistically significant relationship to drought relief across a wide range of tropical climates.


2021 ◽  
Vol 7 (12) ◽  
pp. 2130-2149
Author(s):  
Shashi Shankar Ojha ◽  
Vivekanand Singh ◽  
Thendiyath Roshni

Drought assessment is crucial for effective water resources management in a river basin. Drought frequency has increased worldwide in recent years due to global warming. In this paper, an attempt is made to assess the meteorological drought in the Punpun river basin, India using two globally accepted drought indices namely, Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). The SPI and SPEI at 1-, 3-, 6-, 9-, and 12-month timescale were obtained to analyze the temporal variability of different drought levels. Correlation analysis of available observed data and gridded data has been carried out and the correlation coefficient was found to be 0.956. Hence gridded rainfall data from the year 1991 to 2020 is used for further analysis. Potential evapotranspiration (PET) used in the calculation of SPEI was computed by the Thornthwaite method. Water deficit was observed throughout as there is a decrease in rainfall and an increase in PET during the selected period. The results show that the period 2004 to 2006 and 2009 to 2010 years are observed as drought periods by both indices for almost all timescale. The intensity and duration of drought have increased after 2004. A negative trend of both the indices have been observed in all seasons on all timescale, which clearly shows a transition from near normal to moderately dry during the selected time period. The highest correlation between both the indices is for the 12-month scale with R² value 0.92 and the RMSE value 0.28. The main outcome of this study is that both SPI and SPEI show a strong correlation on same time scales adopted in this study. The dependency of SPEI on temperature is also observed in this study. Doi: 10.28991/cej-2021-03091783 Full Text: PDF


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 72 ◽  
Author(s):  
Fengping Li ◽  
Hongyan Li ◽  
Wenxi Lu ◽  
Guangxin Zhang ◽  
Joo-Cheol Kim

Drought monitoring is one of the significant issues of water resources assessment. Multiple drought indices (DIs), including Percent of Normal (PN), Standardized Precipitation Index (SPI), statistical Z-Score, and Effective Drought Index (EDI) at 18 different timesteps were employed to evaluate the drought condition in Wuyuer River Basin (WRB), Northeast China. Daily precipitation data of 50 years (1960–2010) from three meteorological stations were used in this study. We found DIs with intermediate time steps (7 to 18 months) to have the highest predictive values for identifying droughts. And DIs exhibited a better similarity in the 12-month timestep. Among all the DIs, EDI exhibited the best correlation with other DIs for various timesteps. When further comparing with historical droughts, Z-Score, SPI, and EDI were found more sensitive to multi-monthly cumulative precipitation changes (r2 > 0.55) with respect to monthly precipitation changes (r2 ≤ 0.10), while EDI was more preferable when only monthly precipitation data were available. These results indicated that various indices for different timesteps should be investigated in drought monitoring in WRB, especially the intermediate timesteps should be considered.


Author(s):  
Md. Anarul H. Mondol ◽  
Subash C. Das ◽  
Md. Nurul Islam

Bangladesh is one of the vulnerable countries of the world for natural disasters. Drought is one of the common and severe calamities in Bangladesh that causes immense suffering to people in various ways. The present research has been carried out to examine the frequency of meteorological droughts in Bangladesh using the long-term rainfall data of 30 meteorological observatories covering the period of 1948–2011. The study uses the highly effective Standardized Precipitation Index (SPI) for drought assessment in Bangladesh. By assessing the meteorological droughts and the history of meteorological droughts of Bangladesh, the spatial distributions of meteorological drought indices were also analysed. The spatial and temporal changes in meteorological drought and changes in different years based on different SPI month intervals were analysed. The results indicate that droughts were a normal and recurrent feature and it occurred more or less all over the country in virtually all climatic regions of the country. As meteorological drought depends on only rainfall received in an area, anomaly of rainfall is the main cause of drought. Bangladesh experienced drought in the years 1950, 1951, 1953, 1954, 1957, 1958, 1960, 1961, 1962, 1963, 1965, 1966, 1967 and 1971 before independence and after independence Bangladesh has experienced droughts in the years 1972, 1973, 1975, 1979, 1980, 1983, 1985, 1992, 1994, 1995, 2002, 2004, 2006, 2009 and 2011 during the period 1948–2011. The study indicated that Rajshahi and its surroundings, in the northern regions and Jessore and its surroundings areas, the island Bhola and surrounding regions, in the south-west region, were vulnerable. In the Sylhet division, except Srimongal, the areas were not vulnerable but the eastern southern sides of the districts Chittagong, Rangamati, Khagrachhari, Bandarban and Teknaf were vulnerable. In the central regions, the districts of Mymensingh and Faridpur were more vulnerable than other districts.


2017 ◽  
Vol 15 (5) ◽  
pp. 357-370
Author(s):  
Anan KHAMPEERA ◽  
Chao YONGCHALERMCHAI ◽  
Kuaanan TECHATO

This research aims to study the spatial characteristics of drought throughout the year in Kuan Kreng Peat Swamp (KKPS) by using various drought indices. Meteorological drought indices were analysed by using data of precipitation during the period of the study 1984 - 2013. The standardized precipitation index (SPI) was calculated on the basis of precipitation deficit. Vegetation-based drought indices were also derived from the analysis of Landsat satellite images based on the normalized difference drought index (NDDI). In addition, hydrological drought indices were studied based on the water table level (WTL) and drought assessments were also based on the standardized water level index (SWI) calculated from data on surface water and the groundwater level in the peat swamp forest. The results are presented in the form of maps of geographic information system (GIS) based on the SPI, NDDI, WTL and SWI. The study focused on the droughts in 2 years: 2010 and 2012. The year 2010 was subject to the El Niño phenomenon while 2012 was not. However, peat fires occurred in both years. The assessment of drought using the SPI, WTL and SWI reveals that drought occurred from April to October due to there being less rainfall during that period. The NDDI reveals that vegetation was affected by the drought between February and September due to this being the summer season with high temperatures and less moisture in the air. The 3 types of drought indices used, meteorological, vegetation and hydrological for the period of April to September indicate the likelihood of peat fires in the KKPS area during that period. The results of this study contribute to the understanding of how spatial and temporal data can be used to predict and measure the severity of drought, to which the study area is vulnerable and to the concomitant risk of peat fires.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3366
Author(s):  
Mairon Ânderson Cordeiro Correa de Carvalho ◽  
Eduardo Morgan Uliana ◽  
Demetrius David da Silva ◽  
Uilson Ricardo Venâncio Aires ◽  
Camila Aparecida da Silva Martins ◽  
...  

Drought is a natural disaster that affects a country’s economy and food security. The monitoring of droughts assists in planning assertive actions to mitigate the resulting environmental and economic impacts. This work aimed to evaluate the performance of the standardized precipitation index (SPI) using rainfall data estimated by orbital remote sensing in the monitoring of meteorological drought in the Cerrado–Amazon transition region, Brazil. Historical series from 34 rain gauge stations, in addition to indirect measurements of monthly precipitation obtained by remote sensing using the products CHIRPS-2.0, PERSIANN-CDR, PERSIANN-CCS, PERSIANN, GPM-3IMERGMv6, and GPM-3IMERGDLv6, were used in this study. Drought events detected by SPI were related to a reduction in soybean production. The SPI calculated from the historical rain series estimated by remote sensing allowed monitoring droughts, enabling a high detailing of the spatial variability of droughts in the region, mainly during the soybean development cycle. Indirect precipitation measures associated with SPI that have adequate performance for detecting droughts in the study region were PERSIANN-CCS (January), CHIRPS-2.0 (February and November), and GPM-3IMERGMv6 (March, September, and December). The SPI and the use of precipitation data estimated by remote sensing are effective for characterizing and monitoring meteorological drought in the study region.


Sign in / Sign up

Export Citation Format

Share Document