nutritional physiology
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 25)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Vol 30 (2) ◽  
pp. 163-172
Author(s):  
Deanna Zembrzuski ◽  
Derek A. Woller ◽  
Larry Jech ◽  
Lonnie R. Black ◽  
K. Chris Reuter ◽  
...  

When given a choice, most animals will self-select an optimal blend of nutrients that maximizes growth and reproduction (termed “intake target” or IT). For example, several grasshopper and locust species select a carbohydrate-biased IT, consuming up to double the amount of carbohydrate relative to protein, thereby increasing growth, survival, and migratory capacity. ITs are not static, and there is some evidence they can change through ontogeny, with activity, and in response to environmental factors. However, little research has investigated how these factors influence the relative need for different nutrients and how subsequent shifts in ITs affect the capacity of animals to acquire an optimal diet in nature. In this study, we determined the ITs of 5th instar (final juvenile stage) Melanoplus sanguinipes (Fabricius, 1798), a prevalent crop and rangeland grasshopper pest in the United States, using two wild populations and one lab colony. We simultaneously collected host plants to determine the nutritional landscapes available to the wild populations and measured the performance of the lab colony on restricted diets. Overall, we found that the diet of the wild populations was more carbohydrate-biased than their lab counterparts, as has been found in other grasshopper species, and that their ITs closely matched their nutritional landscape. However, we also found that M. sanguinipes had the lowest performance metrics when feeding on the highest carbohydrate diets, whereas more balanced diets or protein-rich diets had higher performance metrics. This research may open avenues for studying how management strategies coincide with nutritional physiology to develop low-dose treatments specific to the nutritional landscape for the pest of interest.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2194
Author(s):  
Igor Kostić ◽  
Jelica Lazarević ◽  
Darka Šešlija Jovanović ◽  
Miroslav Kostić ◽  
Tatjana Marković ◽  
...  

The gypsy moth (Lymantria dispar L. (Lepidoptera: Erebidae)) is a serious pest of hardwood forests. In the search for an environmentally safe means of its control, we assessed the impact of different concentrations of essential oils (EOs) from the seeds of three Apiaceae plants (anise Pimpinella anisum, dill Anethum graveolens, and fennel Foeniculum vulgare) on behavior, mortality, molting and nutritional physiology of gypsy moth larvae (GML). EOs efficacy was compared with commercial insecticide NeemAzal®-T/S (neem). The main compounds in the Eos were trans-anethole in anise; carvone, limonene, and α-phellandrene in dill; and trans-anethole and fenchone in fennel seed. At 1% EOs concentration, anise and fennel were better antifeedants and all three EOs were more toxic than neem. Neem was superior in delaying 2nd to 3rd larval molting. In the 4th instar, 0.5%, anise and fennel EOs decreased relative consumption rate more than neem, whereas all three EOs were more effective in reducing growth rate, approximate digestibility and efficiency of conversion of food into body mass leading to higher metabolic costs to GML. Decrease in consumption and metabolic parameters compared to control GML confirmed that adverse effects of the EOs stem from both pre- and post-ingestive mechanisms. The results indicate the potential of three EOs to be used for gypsy moth control.


2021 ◽  
Vol 12 ◽  
Author(s):  
Raquel Carmona ◽  
Rocío Muñoz ◽  
F. Xavier Niell

In Southern European estuaries and associated salt marshes, the anthropogenic nutrient inputs, together with longer drought periods, are leading to increasing eutrophication and salinization of these coastal ecosystems. In this study, uptake kinetics of ammonium, nitrate, and phosphate by three common plants in Palmones salt marsh (Southern Spain), Sarcocornia perennis ssp. alpini, Atriplex portulacoides, and Arthrocnemum macrostachyum were measured in hydroponic cultures. We also determined how these uptakes could be modified by increasing salinity, adding NaCl to the incubation medium (from 170 to 1,025 mM). Kinetic parameters are analyzed to understand the competition of the three species for nutrient resources under realistic most frequent concentrations in the salt marsh. These results may also be useful to predict the possible changes in the community composition and distribution if trends in environmental changes persist. Atriplex portulacoides showed the highest Vmax for ammonium, the most abundant nutrient in the salt marsh, while the highest affinity for this nutrient was observed in A. macrostachyum. Maximum uptake rates for nitrate were much lower than for ammonium, without significant differences among species. The highest Vmax value for phosphate was observed in A. macrostachyum, whereas A. portulacoides presented the highest affinity for this nutrient. High salinity drastically affected the physiological response of these species, decreasing nutrient uptake. Sarcocornia perennis ssp. alpini and A. macrostachyum were not affected by salinity up to 510 mM NaCl, whereas A. portulacoides notably decreased its uptake capacity at 427 mM and even withered at 1,025 mM NaCl. At current most frequent concentrations of ammonium and phosphate in the salt marsh, S. perennis ssp. alpini is the most favored species, from the nutritional point of view. However, A. portulacoides could enhance its presence if the increasing ammonium load continues, although a simultaneous salinization would negatively affect its nutritional physiology.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Anthony Basile ◽  
Michael Renner ◽  
Lana Kayata ◽  
Pierre Deviche ◽  
Karen Sweazea

2021 ◽  
Vol 34 (3) ◽  
pp. 321-337
Author(s):  
Keesun Yu ◽  
Inhwan Choi ◽  
Cheol-Heui Yun

The global population has increased with swift urbanization in developing countries, and it is likely to result in a high demand for animal-derived protein-rich foods. Animal farming has been constantly affected by various stressful conditions, which can be categorized into physical, environmental, nutritional, and biological factors. Such conditions could be exacerbated by banning on the use of antibiotics as a growth promoter together with a pandemic situation including, but not limited to, African swine fever, avian influenza, and foot-and-mouth disease. To alleviate these pervasive tension, various immunomodulants have been suggested as alternatives for antibiotics. Various studies have investigated how stressors (i.e., imbalanced nutrition, dysbiosis, and disease) could negatively affect nutritional physiology in chickens. Importantly, the immune system is critical for host protective activity against pathogens, but at the same time excessive immune responses negatively affect its productivity. Yet, comprehensive review articles addressing the impact of such stress factors on the immune system of chickens are scarce. In this review, we categorize these stressors and their effects on the immune system of chickens and attempt to provide immunomodulants which can be a solution to the aforementioned problems facing the chicken industry.


2021 ◽  
Author(s):  
Freya Q. Zhang ◽  
John G. McMullen ◽  
Angela E. Douglas ◽  
Nana Y.D. Ankrah

2020 ◽  
Vol 87 (1) ◽  
Author(s):  
Danielle N. A. Lesperance ◽  
Nichole A. Broderick

ABSTRACT Drosophila melanogaster gut microbes play important roles in host nutritional physiology. However, these associations are often indirect, and studies typically are in the context of specialized nutritional conditions, making it difficult to discern how microbiome-mediated impacts translate to physiologically relevant conditions, in the laboratory or nature. In this study, we quantified changes in dietary nutrients due to D. melanogaster gut bacteria on three artificial diets and a natural diet of grapes. We show that under all four diet conditions, bacteria altered the protein, carbohydrates, and moisture of the food substrate. An in-depth analysis of one diet revealed that bacteria also increased the levels of tryptophan, an essential amino acid encountered scarcely in nature. These nutrient changes result in an increased protein-to-carbohydrate (P:C) ratio in all diets, which we hypothesized to be a significant determinant of microbiome-mediated host nutritional physiology. To test this, we compared life history traits of axenic flies reared on the three artificial diets with increased P:C ratios or continuous bacterial inoculation. We found that while on some diets, an environment of nutritional plenitude had impacts on life history, it did not fully explain all microbiome-associated phenotypes. This suggests that other factors, such as micronutrients and feeding behavior, likely also contribute to life history traits in a diet-dependent manner. Thus, while some bacterial impacts on nutrition occur across diets, others are dictated by unique dietary environments, highlighting the importance of diet-microbiome interactions in D. melanogaster nutritional physiology. IMPORTANCE Both in the laboratory and in nature, D. melanogaster-associated microbes serve as nutritional effectors, either through the production of metabolites or as direct sources of protein biomass. The relationship between the microbiome and the resulting host nutritional physiology is significantly impacted by diet composition, yet studies involving D. melanogaster are performed using a wide range of artificial diets, making it difficult to discern which aspects of host-microbe interactions may be universal or diet dependent. In this study, we utilized three standard D. melanogaster diets and a natural grape diet to form a comprehensive understanding of the quantifiable nutritional changes mediated by the host microbial community. We then altered these artificial diets based on the observed microbe-mediated changes to demonstrate their potential to influence host physiology, allowing us to identify nutritional factors whose effects were either universal for the three artificial diets or dependent on host diet composition.


2020 ◽  
Author(s):  
Danielle N.A. Lesperance ◽  
Nichole A. Broderick

SummaryDrosophila melanogaster gut microbes play important roles in host nutritional physiology. However, these associations are often indirect and studies typically are in the context of specialized nutritional conditions, making it difficult to discern how microbiome-mediated impacts translate to physiologically relevant conditions, in the laboratory or nature. Here, we show that on three artificial diets and a natural diet of grapes, D. melanogaster gut bacteria alter protein, carbohydrates, and moisture of the food substrate. In depth analysis on one diet revealed bacteria also increase tryptophan levels. We investigate how nutrient changes impact life history and find that, while alterations to dietary protein and carbohydrates are arguably the most significant consequence of bacterial association, other factors, such as micronutrients, likely contribute to life history traits in a diet-dependent manner. Our work demonstrates that while some bacterial impacts on nutrition occur across experimental diets, others are dictated by unique dietary environments.


2020 ◽  
Vol 48 (2) ◽  
pp. 167-178
Author(s):  
Manuel Valenzuela-Jiménez ◽  
Claudia Durruty-Lagunes ◽  
Gerard Cuzon ◽  
Wilson Wasielesky Jr. ◽  
Gabriela Gaxiola

Litopenaeus setiferus has been described as an economically important native species ranging from the north Atlantic along the coast of the Gulf of Mexico to Florida. Its reproduction has been studied in captivity, as well as some aspects of its nutritional physiology, diseases and adaptation to various environments, including nurseries. In terms of growth, L. setiferus has been compared with L. vannamei for its performance in ponds. As a native species, L. setiferus benefits local fisheries and is also used as a bait shrimp for recreational activity. The present review covers background information and recent advances in research and development efforts to determine its potential both for aquaculture in ponds and intensive biofloc systems (BFT), as well as for the stocking of fishing grounds. The collective research advances for this species presented in this review could help to sustain various strategies, including highly intensive techniques, to rehabilitate L. setiferus in connection with potential institutes.


Sign in / Sign up

Export Citation Format

Share Document