scholarly journals Innovative multidimensional models in a high-throughput-format for different cell types of endocrine origin

2022 ◽  
Author(s):  
Stefan R Bornstein ◽  
Igor Shapiro ◽  
Maria Malyukov ◽  
Richard Züllig ◽  
Edlira Luca ◽  
...  

The adrenal gland provides an important function by integrating neuronal, immune, vascular, metabolic and endocrine signals under a common organ capsule. It is the central organ of the stress response system and has been implicated in numerous stress-related disorders. While for other diseases, regeneration of healthy organ tissue has been aimed at such approaches are lacking for endocrine diseases - with the exception of type-I-diabetes. Moreover, tumor formation is very common, however, appropriate high-throughput applications reflecting the high heterogeneity and furthermore relevant 3D-structures in vitro are still widely lacking. Recently, we have initiated the development of standardized multidimensional models of a variety of endocrine cell/tissue sources in a new multiwell-format. Firstly, we confirmed common applicability for pancreatic pseudo-islets. Next, we translated applicability for spheroid establishment to adrenocortical cell lines as well as patient material to establish spheroids from malignant, but also benign adrenal tumors. We aimed furthermore at the development of bovine derived adrenal organoids and were able to establish steroidogenic active organoids containing both, cells of cortical and medullary origin. Overall, we hope to open new avenues for basic research, endocrine cancer and adrenal tissue-replacement therapies as we demonstrate potential for innovative mechanistic insights and personalized medicine in endocrine (tumor)-biology.

1987 ◽  
Author(s):  
B JUDE ◽  
A WATEL ◽  
D FONTAINE ◽  
P FONTAINE ◽  
A COSSON

Hypercoagulability is one of the possible factors reported in genesis or aggravation of vascular complications in diabetes mellitus. We therefore examined procoagulant activity (PCA) of disrupted monocytes frcm 26 patients with Type I diabetes and 6 with Type II, versus 32 control subjects (male/ female ratio = 1 in each group).Diabetes monocytes exhibited a slight but detectable PCA before any incubation or in vitro stimulation, whereas control monocytes did not. Data obtained with coagulation factor deficient plasmas or phospholipase C indicated that PCA was tissue factor (TF) alone in 22 cases and TF associated with a significant amount of factor VII/VIIa activity in 10 cases.Incubation in serum free medium led to significant raise of PCA in diabetes cells when stimulated with endotoxin or not, and in control cells only after stimulation. Furthermore, PCA appeared earlier in diabetes monocytes than in control ones, (4 hours, versus 20 hours). PCA frcm control cells was FT-like. PCA frcm diabetes cells was FT-like when no VII/VIIa activity was present on non-stimulated cells, and prothrombinase-like when VII/VIIa activity was early associated with the cells. In the latter case, trace amounts of factor X activity were also detectable. Whether factor VII and factor X activities were of plasmatic origin and associated to the cells, or synthesized in vitro by the cells remains unclear. The characteristics of PCA were net correlated with clinical features (age, diabetic complications) nor with the type of diabetes.Our data suggest that in diabetes patients, monocytes exhibit an increased PCA, possibly corresponding to a baseline stimulation, or at least a higher responsiveness to undergoing stimuli in vitro.


2017 ◽  
Vol 23 (3) ◽  
pp. 217-225 ◽  
Author(s):  
Shuaizhang Li ◽  
Chia-Wen Hsu ◽  
Srilatha Sakamuru ◽  
Chaozhong Zou ◽  
Ruili Huang ◽  
...  

Angiogenesis is an important hallmark of cancer, contributing to tumor formation and metastasis. In vitro angiogenesis models for analyzing tube formation serve as useful tools to study these processes. However, current in vitro co-culture models using primary cells have limitations in usefulness and consistency. Therefore, in the present study, an in vitro co-culture assay system was optimized in a 1536-well format for high-throughput screening using human telomerase reverse transcriptase (hTERT)–immortalized mesenchymal stem cells and aortic endothelial cells. The National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection (NPC) library containing 2816 drugs was evaluated using the in vitro co-culture assay. From the screen, 35 potent inhibitors (IC50 ≤1 µM) were identified, followed by 15 weaker inhibitors (IC50 1–50 µM). Moreover, many known angiogenesis inhibitors were identified, such as topotecan, docetaxel, and bortezomib. Several potential novel angiogenesis inhibitors were also identified from this study, including thimerosal and podofilox. Among the inhibitors, some compounds were proved to be involved in the hypoxia-inducible factor-1α (HIF-1α) and the nuclear factor-kappa B (NF-κB) pathways. The co-culture model developed by using hTERT-immortalized cell lines described in this report provides a consistent and robust in vitro system for antiangiogenic drug screening.


2004 ◽  
Vol 382 (1) ◽  
pp. 261-268 ◽  
Author(s):  
Michael WELSH ◽  
Charlotte WELSH ◽  
Maria EKMAN ◽  
Johan DIXELIUS ◽  
Robert HÄGERKVIST ◽  
...  

Hallmarks of the inflammatory process in Type I diabetes are macrophage activation, local release of β-cell-toxic cytokines and infiltration of cytotoxic T lymphocytes. We have observed recently that mice overexpressing active FRK (fyn-related kinase)/RAK (previously named GTK/Bsk/IYK, where GTK stands for gut tyrosine kinase, Bsk for β-cell Src-homology kinase and IYK for intestinal tyrosine kinase) in β-cells exhibit increased susceptibility to β-cell-toxic events, and therefore, we now attempt to find a more precise role for FRK/RAK in these processes. Phosphopeptide mapping of baculovirus-produced mouse FRK/RAK revealed an autophosphorylation pattern compatible with Tyr-394 being the main site. No evidence for in vitro phosphorylation of the C-terminal regulatory sites Tyr-497 and Tyr-504 was obtained, nor was there any indication of in vitro regulation of FRK/RAK kinase activity. Screening a panel of known tyrosine kinase inhibitors for their ability to inhibit FRK/RAK revealed several compounds that inhibited FRK/RAK, with a potency similar to that reported for their ability to inhibit other tyrosine kinases. Cytokine-induced islet toxicity was reduced in islets isolated from FRK/RAK knockout mice and this occurred without effects on the production of nitric oxide. Addition of the nitric oxide inhibitor nitroarginine to FRK/RAK knockout islets exposed to cytokines decreased cell death to a basal level. In normal islets, cytokine-induced cell death was inhibited by the addition of two FRK/RAK inhibitors, SU4984 and D-65495, or by transfection with short interfering RNA against FRK/RAK. It is concluded that FRK/RAK contributes to cytokine-induced β-cell death, and inhibition of this kinase could provide means to suppress β-cell destruction in Type I diabetes.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Min Xie ◽  
Meijian Wang ◽  
Wei Liu ◽  
Min Xu ◽  
Pan Shang ◽  
...  

Diabetic encephalopathy is a type of central diabetic neuropathy resulting from diabetes mainly manifested as cognitive impairments. However, its underlying pathogenesis and effective treatment strategies remain unclear. In the present study, we investigated the effect of Lipin1, a phosphatidic acid phosphatase enzyme, on the pathogenesis of diabetic encephalopathy. We found that in vitro, Lipin1 exerts protective effects on high glucose-induced reductions of PC12 cell viability, while in vivo, Lipin1 is downregulated within the CA1 hippocampal region in a type I diabetes rat model. Increased levels of Lipin1 within the CA1 region are accompanied with protective effects including amelioration of dendritic spine and synaptic deficiencies, phosphorylation of the synaptic plasticity-related proteins, LIM kinase 1 (p-limk1) and cofilin, as well as increases in the synthesis of diacylglycerol (DAG), and the expression of phosphorylated protein kinase D (p-PKD). These effects are associated with the rescue of cognitive disorders as shown in this rat model of diabetes. In contrast, knockdown of Lipin1 within the CA1 region enhanced neuronal abnormalities and the genesis of cognitive impairment in rats. These results suggest that Lipin1 may exert neuroprotective effects involving the PKD/Limk/Cofilin signaling pathway and may serve as a potential therapeutic target for diabetic encephalopathy.


1997 ◽  
Vol 6 (4) ◽  
pp. 395-402 ◽  
Author(s):  
J.P. Benson ◽  
K.K. Papas ◽  
I. Constantinidis ◽  
A. Sambanis

A bioartificial tissue construct that consists of insulin-secreting cells entrapped in an alginate/poly-l-lysine (PLL) matrix offers a promising approach for the treatment of type I diabetes. Use of transformed cells has been proposed as a solution to the cell availability problem posed by islets. The growth characteristics of transformed cells in their sequestered environment and the effects of PLL on their metabolic and secretory activities have not yet been characterized. Our data demonstrate that mouse insulinoma βTC3 cells proliferate while they are entrapped in both PLL-free and PLL-coated alginate beads. During this process, cell aggregates develop in the bead periphery, which increase in number and size with time. PLL is crucial for the long-term in vitro structural stability of beads, and it does not appear to affect the metabolic and secretory activities of entrapped βTC3 cells. The implications of these findings in the development of a bioartificial pancreatic construct based on transformed cells are discussed.


2020 ◽  
Vol 17 (6) ◽  
pp. 147916412097089
Author(s):  
Fuheng Chen ◽  
Dongdong Ma ◽  
Aizhong Li

Background: The current study aimed to explore the role of SENP3 in endothelial cell dysfunction in a high-glucose setting. Methods: The gene and protein expressions of SENP3 in high-glucose cultured HAECs were examined using quantitative PCR and western blotting. The effects of SENP3 on HAEC viability, apoptosis, migration, and endothelial–monocyte adhesion were evaluated in vitro by knockdown. Moreover, a mouse streptozotocin-induced type I diabetes model was established for SENP3 expression assessment. In addition, the effects of SENP3 on ROS-related signaling pathways were investigated in high-glucose cultured HAECs. Results: Significantly increased levels of SENP3 mRNA and protein were found in high-glucose cultured HAECs in a time-dependent manner. SENP3 knockdown reversed high glucose-induced HAEC viability, apoptosis, and migration reduction. SENP3 knockdown attenuated the high glucose-induced intercellular adhesion of THP-1 monocytic cells and HAECs via downregulation of ICAM-1 and VCAM-1 expression. Increased levels of SENP3, ICAM-1, and VCAM-1 expression were observed in the aorta tissue of mice with type I diabetes. Downregulation of SENP3 expression was observed in HAECs cultured with high glucose levels using the free radical scavenger N-acetyl-L-cysteine or NOX4 siRNA. Conclusions: SENP3 was involved in high glucose-induced endothelial dysfunction, and ROS-dependent signaling served as the mechanism.


2008 ◽  
Vol 294 (5) ◽  
pp. H2204-H2211 ◽  
Author(s):  
Ian P. Luttrell ◽  
Mei Swee ◽  
Barry Starcher ◽  
William C. Parks ◽  
Kanchan Chitaley

The number of men with type II diabetes-associated erectile dysfunction (ED) continues to grow rapidly; however, the majority of basic science studies has examined mechanisms of ED in animal models of type I diabetes. In this study, we first establish an in vivo mouse model of type II diabetic ED using the leptin receptor mutated db/ db and wild-type control BKS mouse. Furthermore, we hypothesized that dual mechanistic impairments contribute to the impaired erectile function in the type II diabetic mouse, altered vasoreactivity, and venoocclusive disorder. In vivo erectile function was measured as intracavernosal pressure (ICP) normalized to mean arterial pressure (MAP) following electrical stimulation of the cavernosal nerve. Venoocclusion was assessed by the maintenance of elevated in vivo ICP following intracorporal saline infusion. Vasoreactivity of isolated cavernosum in response to contractile and dilatory stimulation was examined in vitro by myography. Collagen and elastin content were evaluated by quantification of hydroxyproline and desmosine, respectively, as well as by quantitative PCR and histological analysis of isolated cavernosum. Erectile function was significantly decreased in db/ db vs. BKS mice in a manner consistent with impairments in venoocclusive ability and decreased inflow. Heightened vasoconstriction and attenuated dilation in cavernosum of db/ db vs. BKS mice suggest an overall lowered relaxation ability and thus impaired filling of the cavernosal spaces. A decrease in desmosine and hydroxyproline as well as lowered mRNA levels for tropoelastin, fibrillin-1, and α1(I) collagen were detected. These vasoreactive and sinusoidal matrix alterations may alter tissue compliance dispensability, preventing the normal expansion necessary for erection.


2009 ◽  
Vol 103 (4) ◽  
pp. 664-675 ◽  
Author(s):  
David N. Nguyen ◽  
Phillip Kim ◽  
Luis Martínez-Sobrido ◽  
Brett Beitzel ◽  
Adolfo García-Sastre ◽  
...  

2017 ◽  
Vol 40 (4) ◽  
pp. 169-175 ◽  
Author(s):  
Ruimin Long ◽  
Yuangang Liu ◽  
Shibin Wang ◽  
Li Ye ◽  
Peng He

Introduction To overcome the shortcomings of pancreas transplantation and insulin injection treatment for type I diabetes, biocompatible materials were used to prepare alginate-chitosan-alginate microcapsules that co-encapsulated bone marrow mesenchymal stem cells and mouse pancreatic β cells to treat diabetic mice. Methods Blank alginate-chitosan-alginate (ACA) microcapsules and co-microencapsulated cells were prepared using a high-voltage electrostatic method and then characterized using an inverted microscope. Cell viability was evaluated using AO/EB staining. ELISA kit was used to detect insulin secretion. Peri-orbital blood samples were obtained from the mice for blood glucose determination every week for one month. Results After 28 days of in vitro culture, the secretion of insulin following co-microencapsulation was higher than that observed for microencapsulated beta-TC-6 cells alone. On the 28th day after transplantation, the blood glucose level was 6.86 mmol/L in the microencapsulated beta-TC-6 group. On the 14th day, the blood glucose level was 6.80 mmol/L in the co-microencapsulated BMSC/beta-TC-6 group, which was close to the normal blood glucose level of healthy mice. These results indicated that the efficacy in reducing blood glucose was better in the co-microencapsulated BMSC/beta-TC-6 group. Conclusions This primary study indicated that combining microencapsulation technology and co-culture of stem cells and somatic cells shows promise for the treatment of type I diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document