Post-Cross-Linking of Collagen Hydrogels by Carboxymethylated Polyrotaxanes for Simultaneously Improving Mechanical Strength and Cell Proliferation

Author(s):  
Atsushi Tamura ◽  
Dae Hoon Lee ◽  
Yoshinori Arisaka ◽  
Tae Woong Kang ◽  
Nobuhiko Yui
Author(s):  
Chunyang Bao ◽  
Xuhao Zhang ◽  
Pengdong Yu ◽  
Qingzhong Li ◽  
Yusheng Qin ◽  
...  

Degradable polymers that play an increasingly important role in the development of sustainable society are highly demanded to feature not only high mechanical strength, but also exhibit superior toughness. Herein,...


2021 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Irene Abelenda Núñez ◽  
Ramón G. Rubio ◽  
Francisco Ortega ◽  
Eduardo Guzmán

Hydrogels (HG) are 3D networks of hydrophilic macromolecules linked by different “cross-linking points”, which have as a main advantage their capacity for the adsorption of large amounts of water without any apparent dissolution. This allows hydrogels to undergo reversible swelling–shrinking processes upon the modification of the environmental conditions (pH, ionic strength or temperature). This stimuli-responsiveness and their ability for entrapping in their interior different types of molecules makes hydrogels suitable platforms for drug delivery applications. Furthermore, HGs exhibit certain similarities to the extracellular tissue matrix and can be used as a support for cell proliferation and migration.


Soft Matter ◽  
2013 ◽  
Vol 9 (29) ◽  
pp. 6986-6999 ◽  
Author(s):  
Franziska Bode ◽  
Marcelo Alves da Silva ◽  
Paul Smith ◽  
Christian D. Lorenz ◽  
Seth McCullen ◽  
...  

Enzymatic cross-linking of gelatin (left) proceeds through cluster growth (red); when combined with physical gelation, clusters are constrained by triple-helices (black), yielding a more ordered and efficient network, favouring cell proliferation.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 408-415 ◽  
Author(s):  
Rupalben Kaushalkumar Jani ◽  
Gohil Krupa

In nanomedicines, currently a wide array of reported nanoparticle systems is being explored by targeting schemes which suggests great potential of targeted delivery to revolutionize cancer therapeutics. This review  gives insight into recent  challenges in modification of nanoparticle systems for enhanced cancer therapy  acknowledged by researchers to date and also outlines different major targeting strategies of nanoparticle systems that have been utilized for the delivery of therapeutics or imaging agents, targeting ligand and cross-linking agent to cancer  which was divided into three sections: 1) Angiogenesis associated targeting, 2) Uncontrolled cell proliferation targeting and 3) Tumor cell targeting. Keywords: nanoparticles, tumor cells, active targeting, targeting strategies, targeting ligands


2018 ◽  
Vol 33 (4) ◽  
pp. 397-415 ◽  
Author(s):  
Harish Chinnasami ◽  
Jeff Gimble ◽  
Ram V Devireddy

Thermally induced phase separation method was used to make porous three-dimensional poly (l-lactic acid) scaffolds. The effect of imposed thermal profile during freezing of the poly (l-lactic acid) in dioxane solution on the scaffold was characterized by their micro-structure, porosity (%), pore sizes’ distribution, and mechanical strength. The porosity (%) decreased considerably with increasing concentrations of poly (l-lactic acid) in the solution, while a decreasing trend was observed with increasing cooling rates. The mechanical strength increases with increase in poly (l-lactic acid) concentration and also with increase in the cooling rate for both types of solvents. Therefore, mechanical strength was increased by higher cooling rates while the porosity (%) remained relatively consistent. Scaffolds made using higher concentrations of poly (l-lactic acid; 7% and 10% w/v) in solvent showed better mechanical strength which improved relatively with increasing cooling rates (1°C–40°C/min). This phenomenon of enhanced structural integrity with increasing cooling rates was more prominent in scaffolds made from higher initial poly (l-lactic acid) concentrations. Human adipose–derived stem cells were cultured on these scaffold (7% and 10% w/v) prepared by thermally induced phase separation at all cooling rates to measure the cell proliferation efficiency as a function of their micro-structural properties. Mean pore sizes played a crucial role in cell proliferation than percent porosity since all scaffolds were >88% porous. The viability percent of human adipose tissue–derived adult stem cells increased consistently with longer periods of culture. Thus, poly (l-lactic acid) scaffolds prepared by thermally controlled thermally induced phase separation method could be a prime candidate for making ex vivo tissue-engineered grafts for surgical implantation.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Pazit Y. Cohen ◽  
Raphael Breuer ◽  
Shulamit B. Wallach-Dayan

Lung fibrosis is characterized by abnormal accumulation of Thy-deficient fibroblasts in the interstitium of the alveolar space. We have previously shown in bleomycin-treated chimeric Thy1-deficient mice with wild-type lymphocytes that Thy1-deficient fibroblasts accumulate and promote fibrosis and an “inflammation-free” environment. Here, we aimed to identify the critical effects of Thy1, or the absence of Thy1, in lung myofibroblast profibrotic functions, particularly proliferation and collagen deposition. Using specific Thy1 siRNA in Thy1-positive cells, Thy1 knockout cells, Thy1 cDNA expression vector in Thy1-deficient cells, and Thy1 cross-linking, we evaluated cell proliferation (assessed by cell mass and BrdU uptake), differentiation (using immunofluorescence), and collagen deposition (using Sircol assay). We found that myofibroblast Thy1 cross-linking and genetic manipulation modulate cell proliferation and expression of Fgf (fibroblast growth factor) and Angtl (angiotensin) receptors (using qPCR) that are involved in myofibroblast proliferation, differentiation, and collagen deposition. In conclusion, lung myofibroblast downregulation of Thy1 expression is critical to increase proliferation, differentiation, and collagen deposition.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3710-3710
Author(s):  
Ilse Houtenbos ◽  
Saskia J.A.M. Santegoets ◽  
Theresia M. Westers ◽  
Quinten Waisfisz ◽  
Sergey Kipriyanov ◽  
...  

Abstract Dendritic cell (DC)-based immunotherapy faces new challenges since efficacy of DC vaccines in clinical trials has been inconsistent. Strategies to improve immune responses induced by DC are currently being explored. We have recently shown the feasibility of generating fully functional DC from Acute Myeloid Leukemic (AML) blasts, but with varying expression levels of the important costimulatory molecule CD86. To overcome this variability, we developed a novel bispecific diabody (BsDb) simultaneously and agonistically targeting CD40 on AML-DC and CD28 on naïve T cells. Beside optimization of CD28-mediated signaling, the resulting cellular cross-linking was also hypothesized to increase the strength and duration of T cell/AML-DC interactions, thus increasing T cell responsiveness to AML antigens. Indeed the αCD40/αCD28-bispecific diabody provokes increased T cell-DC cluster formation as assessed by light microscopy. Significant increased cluster formation was observed when T cells and AML-DC were cocultured in presence of the BsDb as compared to T cells incubated with a control protein (46%±2 versus 22%±1 respectively, p<0.05). Prior incubation of T cells and/or AML-DC with CD28 or CD40, respectively, completely prevented cluster formation in presence of the BsDb indicating specific binding of the BsDb to CD40 and CD28. The αCD40/αCD28 BsDb significantly increases T cell proliferation induced by AML-DC as compared to the unstimulated cocultures, in a dose dependent manner, as evaluated by mixed lymphocyte reactions (fold increased T cell proliferation of cocultures stimulated with BsDb as compared to unstimulated cocultures:170%±12, p<0.05). In addition, BsDb is capable of DC maturation induction as shown by significant increased mean fluorescence index (MFI) of the maturation markers CD80 (MFI of AML-DC cultured in presence of control protein vs AML-DC cultured in presence of BsDb: 22±5 vs 12±3, p<0.05) and CD83 (4±1 vs 1.5±0.5, p<0.05). In order to determine the effect of aCD40/aCD28-bispecific diabody-mediated cross-linking of AML-derived DC and CD8+ T cells on the induction efficiency of tumor-specific CTL, AML-DC derived from the HLA-A2+ AML cell line MUTZ-3 were pre-incubated with the aCD40/aCD28-bispecific diabody, loaded with the heteroclitic variant of the aa988 epitope of hTERT, and used as stimulator cells in an HLA-A2-matched allogeneic in vitro CTL induction protocol. In total nine parallel bulk cultures, were stimulated twice with peptide-loaded MUTZ-3 DC, either pulsed with control protein or the aCD40/aCD28-bispecific diabody. hTERT988Y-specific CD8+ T cells could be detected in 5/9 individual cultures when stimulated with DC pulsed with the aCD40/aCD28-bispecific diabody, whereas in only 1/9 individual cultures hTERT988Y-specific CD8+ T cells could be detected when stimulated with DC pulsed with the control protein. Thus, priming efficacy of tumor-specific cytotoxic T cells can also be improved by cross-linking AML-DC and T cells with the αCD40/αCD28 diabody. We propose that the αCD40/αCD28-bispecific diabody can serve as a potent therapeutic tool to effectively augment anti-tumor T cell responses elicited by AML-DC.


2011 ◽  
Vol 403-408 ◽  
pp. 2985-2988
Author(s):  
Ping Zhang ◽  
Ling Bin Lu ◽  
Hai Feng Yang ◽  
Yang Cao

The degradable and well-distributed calcium alginates were obtained successfully by ionically cross-linking reaction which was the oxidized Sodium Alginate reflected with calcium ions. Their biological performances were investigated by testing swelling ratio, compression strength and degradation. The effects of oxidation degree and cross-linking density on the properties of calcium alginate were assessed. The results show the swelling ratios of samples were almost no effect whether modified or unmodified, furthermore modified calcium alginate had better degradation performance than unmodified.Lastly, oxidation may reduced the compression strength of samples,but increasing of ionically cross-linking density can enhance the mechanical strength.


Sign in / Sign up

Export Citation Format

Share Document