Numerical Simulation on Oblique Towing Tests and Pure Yaw Tests of a Containership in Surf-Riding Condition

Author(s):  
Chengqian Ma ◽  
Ning Ma ◽  
Xiechong Gu

Abstract Maneuvering in waves is a complex and critical issue that confuses researchers for the last several decades. Among the existing methods for predicting the maneuverability in waves, the widely-used mathematical model approach (MMG model) is considered to be efficient and accurate in large wavelength and small wave steepness conditions. However, based on the assumption that the maneuvering forces in waves are the same as those in calm water, the wave effect on the hydrodynamic derivatives is neglected in most mathematical model approaches. According to the previous theoretical analysis and experimental data, this assumption is flawed. Therefore, several experiments and some numerical simulations have conducted to research the wave effect on hydrodynamic derivatives. In the present study, oblique towing tests and pure yaw tests will be simulated using the state-of-the-art CFD techniques to obtain the linear hydrodynamic derivatives in waves. The simulation cases in the present study are set according to previous PMM tests of S175 containership in surf-riding conditions. And the simulation results are in good agreement with experimental ones. Based on that, the wave effect on hydrodynamic derivatives is obtained and some discussions are made. Finally, the course stability of the containership on the different relative position of the wave are calculated to analyze the preliminary reason for the broaching-to phenomenon.

Author(s):  
Chengqian Ma ◽  
Ning Ma ◽  
Xiechong Gu ◽  
Peiyuan Feng

Abstract The theoretical method, or named the potential flow method, is most widely used in the research of maneuvering in waves. However, this approach used in previous studies is based on the assumption that maneuvering hydrodynamic derivatives in waves are the same as those in calm water. However, this assumption can be inaccurate, which makes the simulations inexact sometimes. Meanwhile, there are few experiments performed to investigate the hydrodynamic derivatives in waves considering the complexities of the experimental setup and data processing. There is even no systematic numerical simulation in this field. Considering the importance of the wave effect on the hydrodynamic derivatives and the advantages of the CFD method, in this study, the numerical simulations of the PMM tests on a containership S175 in regular waves are performed for the first time. The hydrodynamic derivatives in waves are obtained by simulations in the following waves, to be specific, the surf-riding condition. The surf-riding condition is chosen for separating the wave-induced component easily and researching the reason for the broaching-to phenomenon. The simulation results are validated by experimental data with satisfactory accuracy, which indicates the effectiveness of the numerical setup. The results reveal that the wave has a significant effect on hydrodynamic derivatives. The detailed changing trends and simulation methods of all hydrodynamic derivatives are proposed in this paper. Moreover, the course stability in waves is evaluated by the hydrodynamic derivatives in waves, which verifies the reason for the occurrence of the broaching-to phenomenon.


Author(s):  
Tianlong Mei ◽  
Yi Liu ◽  
Manasés Tello Ruiz ◽  
Marc Vantorre ◽  
Evert Lataire ◽  
...  

Abstract The ship’s manoeuvring behaviour in waves is significantly different from that in calm water. In this context, the present work uses a hybrid method combining potential flow theory and Computational Fluid Dynamics (CFD) techniques for the prediction of ship manoeuvrability in regular waves. The mean wave-induced drift forces are calculated by adopting a time domain 3D higher-order Rankine panel method, which includes the effect of the lateral speed and forward speed. The hull-related hydrodynamic derivatives are determined based on a RANS solver using the double body flow model. The two-time scale method is applied to integrate the improved seakeeping model in a 3-DOF modular type Manoeuvring Modelling Group (MMG model) to investigate the ship’s manoeuvrability in regular waves. Numerical simulations are carried out to predict the turning circle in regular waves for the S175 container carrier. The turning circle’s main characteristics as well as the wave-induced motions are evaluated. A good agreement is obtained by comparing the numerical results with experimental data obtained from existing literature. This demonstrates that combining potential flow theory with CFD techniques can be used efficiently for predicting the manoeuvring behaviour in waves. This is even more true when the manoeuvring derivatives cannot be obtained from model tests when there is lack of such experimental data.


Brodogradnja ◽  
2021 ◽  
Vol 72 (2) ◽  
pp. 93-114
Author(s):  
Kun Dai ◽  
◽  
Yunbo Li ◽  

Free running model tests and a system-based method are employed to evaluate maneuvering performance for a Small Waterplane Area Twin Hull (SWATH) ship in this paper. A 3 degrees of freedom Maneuvering Modeling Group (MMG) model is implemented to numerically simulate the maneuvering motions in calm water. Virtual captive model tests are performed by using a Reynolds-averaged Navier-Stokes (RANS) method to acquire hydrodynamic derivatives, after a convergence study to check the numerical accuracy. The turning and zigzag maneuvers are simulated by solving the maneuvering motion model and the predicted results agree well with the experimental data. Moreover, free running model tests are carried out for three lateral separations and the influence of the lateral separations on maneuvering performance is investigated. The research results of this paper will be helpful for the maneuvering prediction of the small waterplane area twin hull ship.


Author(s):  
Denys Popelysh ◽  
Yurii Seluk ◽  
Sergyi Tomchuk

This article discusses the question of the possibility of improving the roll stability of partially filled tank vehicles while braking. We consider the dangers associated with partially filled tank vehicles. We give examples of the severe consequences of road traffic accidents that have occurred with tank vehicles carrying dangerous goods. We conducted an analysis of the dynamic processes of fluid flow in the tank and their influence on the basic parameters of the stability of vehicle. When transporting a partially filled tank due to the comparability of the mass of the empty tank with the mass of the fluid being transported, the dynamic qualities of the vehicle change so that they differ significantly from the dynamic characteristics of other vehicles. Due to large displacements of the center of mass of cargo in the tank there are additional loads that act vehicle and significantly reduce the course stability and the drivability. We consider the dynamics of liquid sloshing in moving containers, and give examples of building a mechanical model of an oscillating fluid in a tank and a mathematical model of a vehicle with a tank. We also considered the method of improving the vehicle’s stability, which is based on the prediction of the moment of action and the nature of the dynamic processes of liquid cargo and the implementation of preventive actions by executive mechanisms. Modern automated control systems (anti-lock brake system, anti-slip control systems, stabilization systems, braking forces distribution systems, floor level systems, etc.) use a certain list of elements for collecting necessary parameters and actuators for their work. This gives the ability to influence the course stability properties without interfering with the design of the vehicle only by making changes to the software of these systems. Keywords: tank vehicle, roll stability, mathematical model, vehicle control systems.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Amirreza Hooshyar Telegraphi ◽  
Akif Asil Bulgak

AbstractDue to the stringent awareness toward the preservation and resuscitation of natural resources and the potential economic benefits, designing sustainable manufacturing enterprises has become a critical issue in recent years. This presents different challenges in coordinating the activities inside the manufacturing systems with the entire closed-loop supply chain. In this paper, a mixed-integer mathematical model for designing a hybrid-manufacturing-remanufacturing system in a closed-loop supply chain is presented. Noteworthy, the operational planning of a cellular hybrid manufacturing-remanufacturing system is coordinated with the tactical planning of a closed-loop supply chain. To improve the flexibility and reliability in the cellular hybrid manufacturing-remanufacturing system, alternative process routings and contingency process routings are considered. The mathematical model in this paper, to the best of our knowledge, is the first integrated model in the design of hybrid cellular manufacturing systems which considers main and contingency process routings as well as reliability of the manufacturing system.


2021 ◽  
pp. 1-13
Author(s):  
Paul F. White ◽  
Dominic J. Piro ◽  
Bradford G. Knight ◽  
Kevin J. Maki

The maneuvering characteristics of a surface ship play a critical role in the safety of navigation both in port and in an open seaway, and are vital to the overall operational ability of the ship. The vast majority of maneuvering analyses for ships have been performed under the assumption of calm water, yet ships mostly operate in waves. Understanding of maneuvering in waves is limited by the complexity of the problem and the challenges of performing physical experiments and numerical simulations. In this work, a new fast-running method that allows for the study of maneuvering in waves is formulated. The newly formulated approach is categorized as a “hybrid method,” taking its name from the multiple numerical methods and force models used to predict the total hydrodynamic force acting on the vessel maneuvering in waves. The framework presented here uses a combination of Computational Fluid Dynamics, a linear time-domain boundary element method, and a propeller-force model for efficient computation of the total hydrodynamic force.


2005 ◽  
Vol 49 (02) ◽  
pp. 69-79 ◽  
Author(s):  
Ming-Chung Fang ◽  
Jhih-Hong Luo ◽  
Ming-Ling Lee

In the paper, a simplified six degrees of freedom mathematical model encompassing calm water maneuvering and traditional seakeeping theories is developed to simulate the ship turning circle test in regular waves. A coordinate system called the horizontal body axes system is used to present equations of maneuvering motion in waves. All corresponding hydrodynamic forces and coefficients for seakeeping are time varying and calculated by strip theory. For simplification, the added mass and damping coefficients are calculated using the constant draft but vary with encounter frequency. The nonlinear mathematical model developed here is successful in simulating the turning circle of a containership in sea trial conditions and can be extended to make the further simulation for the ship maneuvering under control in waves. Manuscript received at SNAME headquarters February 19, 2003; revised manuscript received January 27, 2004.


2019 ◽  
Vol 161 (A2) ◽  

In this paper, an attempt has been made to predict the performance of a planing catamaran using a mathematical model. Catamarans subjected to a common hydrodynamic lift, have an extra lift between the two asymmetric half bodies. In order to develop a mathematical model for performance prediction of planing catamarans, existing formulas for hydrodynamic lift calculation must be modified. Existing empirical and semi-empirical equations in the literature have been implemented and compared against available experimental data. Evaluation of lift in comparison with experimental data has been documented. Parameters influencing the interaction between demi-hulls and separation effects have been analyzed. The mathematical model for planing catamarans has been developed based on Savitsky’s method and results have been compared against experimental data. Finally, the effects of variation in hull geometry such as deadrise angle and distance between two half bodies on equilibrium trim angle, resistance and wetted surface have been examined.


2015 ◽  
Vol 12 (2) ◽  
pp. 73-94 ◽  
Author(s):  
P. Ghadimi ◽  
S. Tavakoli ◽  
M. A. Feizi Chekab ◽  
A. Dashtimanesh

Mathematical modeling of planing hulls and determination of their characteristics are the most important subjects in hydrodynamic study of planing vessels. In this paper, a new mathematical model has been developed based on pressure distribution. This model has been provided for two different situations: (1) for a situation in which all forces pass through the center of gravity and (2) for a situation in which forces don not necessarily pass through the center of gravity. Two algorithms have been designed for the governing equations. Computational results have been presented in the form of trim angle, total pressure, hydrodynamic and hydrostatic lift coefficients, spray apex and total resistance which includes frictional, spray and induced resistances. Accuracy of the model has been verified by comparing the numerical findings against the results of Savitsky's method and available experimental data. Good accuracy is displayed. Furthermore, effects of deadrise angle on trim angle of the craft, position of spray apex and resistance have been investigated.


Author(s):  
Yuting Jin ◽  
Lucas J. Yiew ◽  
Allan R. Magee ◽  
Yingying Zheng

Abstract Maritime autonomous surface ships (MASS) require accurate future state projection to initiate collision-avoidance manoeuvres. Forecasts of the vessels’ trajectories and motions are fundamentally based on the mathematical manoeuvring model, which is an essential component of their hydrodynamic digital twin nowadays. Using the benchmark container ship KCS as an object of study, this paper adopts a 4-DOF modular-type manoeuvring (MMG) model to predict the vessel trajectories in calm water and under the presence of steady current and regular waves. The current effects are treated as additional ship over water speed, while the wave effects are considered by superimposing the second-order mean wave drift loads to the calm water hull hydrodynamics. The wave drift loads are solved using the potential flow solver WASIM, which is based on Rankine panel method. The computed vessel trajectories and motions are compared with available literature results and show good correlation.


Sign in / Sign up

Export Citation Format

Share Document