scholarly journals Proteasome Inhibitors and Their Pharmacokinetics, Pharmacodynamics, and Metabolism

2021 ◽  
Vol 22 (21) ◽  
pp. 11595
Author(s):  
Jinhai Wang ◽  
Ying Fang ◽  
R. Andrea Fan ◽  
Christopher J. Kirk

The proteasome is responsible for mediating intracellular protein degradation and regulating cellular function with impact on tumor and immune effector cell biology. The proteasome is found predominantly in two forms, the constitutive proteasome and the immunoproteasome. It has been validated as a therapeutic drug target through regulatory approval with 2 distinct chemical classes of small molecular inhibitors (boronic acid derivatives and peptide epoxyketones), including 3 compounds, bortezomib (VELCADE), carfilzomib (KYPROLIS), and ixazomib (NINLARO), for use in the treatment of the plasma cell neoplasm, multiple myeloma. Additionally, a selective inhibitor of immunoproteasome (KZR-616) is being developed for the treatment of autoimmune diseases. Here, we compare and contrast the pharmacokinetics (PK), pharmacodynamics (PD), and metabolism of these 2 classes of compounds in preclinical models and clinical studies. The distinct metabolism of peptide epoxyketones, which is primarily mediated by microsomal epoxide hydrolase, is highlighted and postulated as a favorable property for the development of this class of compound in chronic conditions.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sizhe Liu ◽  
Vasiliy Galat ◽  
Yekaterina Galat4 ◽  
Yoo Kyung Annie Lee ◽  
Derek Wainwright ◽  
...  

AbstractNatural killer (NK) cell is a specialized immune effector cell type that plays a critical role in immune activation against abnormal cells. Different from events required for T cell activation, NK cell activation is governed by the interaction of NK receptors with target cells, independent of antigen processing and presentation. Due to relatively unsophisticated cues for activation, NK cell has gained significant attention in the field of cancer immunotherapy. Many efforts are emerging for developing and engineering NK cell-based cancer immunotherapy. In this review, we provide our current understandings of NK cell biology, ongoing pre-clinical and clinical development of NK cell-based therapies and discuss the progress, challenges, and future perspectives.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 76-76
Author(s):  
Ronald L. Nagel ◽  
Dhananjay K. Kaul ◽  
Mary E. Fabry ◽  
Raouf Alami ◽  
Anne C. Rybicki

Abstract The expression profile of a number of genes in the rat mesocecum linked to sickle (SS) red blood cell (RBC) adhesion was examined by microarray analysis. The abnormal adherence of SS RBC to the vascular endothelium has been proposed to play an important role in vaso-occlusion in a double capacity; first, by actual physical blockage of the post capillary venules and, second, by inducing the expression of pleiotropic genes that could lead to further modification of the SS phenotype. The goals of these experiments were to identify these pleiotropic genes expressed upon adhesion of SS RBC, to understand how they contribute to the SS phenotype and, to identify potential targets for therapy. The rat mesocecum preparation was prepared as described (Kaul et al, Blood95:368, 2000) and platelet activating factor (PAF) was used to induce endothelial adhesion receptors to accentuate human SS RBC binding. Rat cecum/ mesocecum RNA was prepared by Qiagen RNeasy mini-kit and fluorescent labeled cDNA hybridized to 32K oligonucleotide microarrays followed by analysis using Gene Pix Pro 4.1. The effect of SS RBC perfusion on PAF-treated tissues vs untreated tissues was compared to PAF-only tissues vs untreated tissues using hierarchical clustering. SS RBC adhesion was analyzed as a function of venular diameter and was significantly different (p<0.00001) in the PAF treated tissues as revealed by a significantly higher Y-intercept (work quoted above). Of the 533 transcripts that were up-regulated and 353 transcripts that were down-regulated more than 2 fold, 68 were up-regulated and 32 were down-regulated more than 4-fold; of this subset, 91 transcripts were compared by Cluster analysis. Many of the up-regulated genes detected in the PAF treated SS RBC adherent tissues were associated with inflammation such as phospholipase A2, group IIA; glutathione peroxidase 2; sialyltransferase 4C; and integrin beta 4. Interestingly, a number of proteasome subunits and ubiquitin D were also highly up-regulated; these genes were only present in the SS RBC perfused PAF treated mesocecum and could then be considered potential targets for specific therapies e.g. proteasome inhibitors. Recent studies also indicate that the ubiquitin system controls NF-kappaB pathways that, in turn, control integrin expression that can increase cell adhesion. The genes that were down-regulated included apolipoprotein B; cytochrome P450 Cyp4b1; cyclin G associated kinase; and metallothionein 2 (MT2). The down-regulation of MT2 is interesting because it is known to be highly regulated in response to the plasma zinc concentration; due to the chronic inflammatory/oxidative condition present in SS disease, zinc may be depleted and feedback negatively on MT2 synthesis. SS RBC adhesion however, not just PAF treatment, is necessary for MT2 downregulation and may, paradoxically, increase zinc availability since MT expression and zinc depletion are inversely correlated. Overall, the results suggest that SS RBC adhesion regulates a number of mesocecum genes involved in the inflammatory response, regulation of oxidative damage, increased intracellular protein degradation, decreased vesicular transport and regulation of zinc ion concentration. These pleiotropic genes are candidates for epistatic (modifier) genes if found to be polymorphic in different individuals and ethnicities. Enhancing or interfering with these specific genes or metabolic pathways may open up new therapeutic strategies for SS disease.


2011 ◽  
Vol 12 (5) ◽  
pp. 709-723 ◽  
Author(s):  
Angela F. Dulhunty ◽  
Marco G. Casarotto ◽  
Nicole A. Beard

2010 ◽  
Vol 20 (19) ◽  
pp. 5839-5842 ◽  
Author(s):  
Takumi Watanabe ◽  
Hikaru Abe ◽  
Isao Momose ◽  
Yoshikazu Takahashi ◽  
Daishiro Ikeda ◽  
...  

Hematology ◽  
2015 ◽  
Vol 2015 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Guy Young

Abstract Thrombotic complications are increasing at a steady and significant rate in children, resulting in the more widespread use of anticoagulation in this population. Anticoagulant drugs in children can be divided into the older multitargeted agents (heparin, low-molecular-weight heparin, and warfarin) and the newer targeted agents (argatroban, bivalirudin, and fondaparinux). This review will compare and contrast the multitargeted and targeted anticoagulants and suggest situations in which it may be appropriate to use argatroban, bivalirudin, and fondaparinux. The various agents differ in their pharmacokinetics, requirements for therapeutic drug monitoring, frequency of administration, efficacy, and adverse effects. The targeted anticoagulants have properties that may make them more attractive for use in specific clinical situations. Prospective clinical trial data are presented supporting the current and future use of these agents in children.


2021 ◽  
Vol 103 (3) ◽  
pp. 37-46
Author(s):  
S.S. Bhujbal ◽  
◽  
M. Kale ◽  
B. Chawale ◽  
◽  
...  

COVID-19 cases increase at a high rate and become dangerous in recent months. As a consequence, some healthcare and research organizations are attempting to find an effective cure for the COVID-19 outbreak. Many natural products have been reported to have powerful activity against COVID-19 in recent research studies. The primary aim of this article is to establish natural bioactive compounds with suitable antiviral properties. Lui et al. have reported in their study that SARS-Cov-2 main protease is present in a crystalline structure known as a novel therapeutic drug target. It is important to inhibit SARS-Cov-2 main protease to stop the replication of viral proteins. In this study natural compounds were screened using molecular modeling techniques to investigate probable bioactive compounds that block SARS-Cov-2. From these studies many natural compounds were found to have the potential to interact with viral proteins and show inhibitory activity against COVID-19 main protease (Mpro) and these natural compounds were also compared to known antiviral drugs such as Saquinavir and Remdesivir. Besides that, additional research is needed before these potential leads can be developed into natural therapeutic agents against COVID-19 to fight the epidemic.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Syed Ovais Aftab ◽  
Muhammad Zubair Ghouri ◽  
Muhammad Umer Masood ◽  
Zeshan Haider ◽  
Zulqurnain Khan ◽  
...  

Author(s):  
Rahul Chandela ◽  
Dhananjay Jade ◽  
Surender Mohan ◽  
Sugumar Shobana ◽  
Ridhi Sharma

Background: Stenotrophomonas maltophilia is a multi-drug resistant, gram-negative bacterium that causes opportunistic infections and is associated with high morbidity and mortality in severely immunocompromised individuals. Aim: To find out the drug target and a novel inhibitor for Stenotrophomonas maltophilia. Objectives: Current study focused on the identification of specific drug target by subtractive genomes analysis and to find out the novel inhibitor for the identified target protein by virtual screening, molecular docking, and molecular simulation approach. Materials and Methods: In this study, we performed a subtractive genomics approach to identify the novel drug target for S.maltophilia. After obtaining the specific target, the next footstep was to identify inhibitors that include the calculation of 2D Similarity search, Molecular Docking, and Molecular Simulation for the drug development for the S.maltophilia. Results: With an efficient subtractive genomic approach, five unique targets as the impressive therapeutics founded out of 4386 protein genes. In which UDP-D-acetylmuramic (murF) was the most remarkable target. Further virtual screening, docking, and dynamics resulted in the identification of seven novel inhibitors. Conclusion: Further, in vitro and in vivo bioassay of the identified novel inhibitors could facilitate effective drug use against S.maltophilia.


Sign in / Sign up

Export Citation Format

Share Document