scholarly journals The Ins and Outs of Cathepsins: Physiological Function and Role in Disease Management

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1679 ◽  
Author(s):  
Tulasi Yadati ◽  
Tom Houben ◽  
Albert Bitorina ◽  
Ronit Shiri-Sverdlov

Cathepsins are the most abundant lysosomal proteases that are mainly found in acidicendo/lysosomal compartments where they play a vital role in intracellular protein degradation,energy metabolism, and immune responses among a host of other functions. The discovery thatcathepsins are secreted and remain functionally active outside of the lysosome has caused a paradigmshift. Contemporary research has unraveled many versatile functions of cathepsins in extralysosomallocations including cytosol and extracellular space. Nevertheless, extracellular cathepsins are majorlyupregulated in pathological states and are implicated in a wide range of diseases including cancerand cardiovascular diseases. Taking advantage of the dierential expression of the cathepsinsduring pathological conditions, much research is focused on using cathepsins as diagnostic markersand therapeutic targets. A tailored therapeutic approach using selective cathepsin inhibitors isconstantly emerging to be safe and ecient. Moreover, recent development of proteomic-basedapproaches for the identification of novel physiological substrates oers a major opportunity tounderstand the mechanism of cathepsin action. In this review, we summarize the available evidenceregarding the role of cathepsins in health and disease, discuss their potential as biomarkers ofdisease progression, and shed light on the potential of extracellular cathepsin inhibitors as safetherapeutic tools.

2006 ◽  
Vol 291 (1) ◽  
pp. H1-H19 ◽  
Author(s):  
Saul R. Powell

The ubiquitin-proteasome system (UPS) is the major nonlysosomal pathway for intracellular protein degradation, generally requiring a covalent linkage of one or more chains of polyubiquitins to the protein intended for degradation. It has become clear that the UPS plays major roles in regulating many cellular processes, including the cell cycle, immune responses, apoptosis, cell signaling, and protein turnover under normal and pathological conditions, as well as in protein quality control by removal of damaged, oxidized, and/or misfolded proteins. This review will present an overview of the structure, biochemistry, and physiology of the UPS with emphasis on its role in the heart, if known. In addition, evidence will be presented supporting the role of certain muscle-specific ubiquitin protein ligases, key regulatory components of the UPS, in regulation of sarcomere protein turnover and cardiomyocyte size and how this might play a role in induction of the hypertrophic phenotype. Moreover, this review will present the evidence suggesting that proteasomal dysfunction may play a role in cardiac pathologies such as myocardial ischemia, congestive heart failure, and myofilament-related and idiopathic-dilated cardiomyopathies, as well as cardiomyocyte loss in the aging heart. Finally, certain pitfalls of proteasome studies will be described with the intent of providing investigators with enough information to avoid these problems. This review should provide current investigators in the field with an up-to-date analysis of the literature and at the same time provide an impetus for new investigators to enter this important and rapidly changing area of research.


2021 ◽  
Vol 22 (12) ◽  
pp. 6403
Author(s):  
Md Saidur Rahman ◽  
Khandkar Shaharina Hossain ◽  
Sharnali Das ◽  
Sushmita Kundu ◽  
Elikanah Olusayo Adegoke ◽  
...  

Insulin is a polypeptide hormone mainly secreted by β cells in the islets of Langerhans of the pancreas. The hormone potentially coordinates with glucagon to modulate blood glucose levels; insulin acts via an anabolic pathway, while glucagon performs catabolic functions. Insulin regulates glucose levels in the bloodstream and induces glucose storage in the liver, muscles, and adipose tissue, resulting in overall weight gain. The modulation of a wide range of physiological processes by insulin makes its synthesis and levels critical in the onset and progression of several chronic diseases. Although clinical and basic research has made significant progress in understanding the role of insulin in several pathophysiological processes, many aspects of these functions have yet to be elucidated. This review provides an update on insulin secretion and regulation, and its physiological roles and functions in different organs and cells, and implications to overall health. We cast light on recent advances in insulin-signaling targeted therapies, the protective effects of insulin signaling activators against disease, and recommendations and directions for future research.


Author(s):  
Emdormi Rymbai ◽  

Plants are an important source of natural products and they play a vital role in the field of medicinal chemistry and pharmaceutical science. Traditional medicines have been practiced and used for thousands of years, mostly in Asian countries, where plants are the main sources of medicine. Houttuynia cordata, a herb that belongs to the family Saururaceae, has a wide range of pharmacological activities and is used traditionally in conditions like anisolobis sores, heatstroke, lung carbuncles, malaria, scrotal abscess, tonsillitis, salammoniac poison and has also been widely accepted to possess anti-cancer, anti-oxidant, anti-hypertension, anti-inflammatory, anti-mutagenic, antibacterial, anti-viral and anti-purulent activity. Moreover, it is one of the herbs that was recognized during pandemic outbreaks, such as Severe Acute Respiratory Syndrome Coronavirus (SARS CoV) in China, virulent Newcastle Disease Virus (VNDV) in Java (Indonesia) and Newcastle (England). In this review, we briefly discuss the role of H. cordata as an anti-viral agent and the possibility of developing a dosage form against Coronavirus disease-19 (COVID-19).


2018 ◽  
Vol 12 (1) ◽  
pp. 52-68 ◽  
Author(s):  
Aziz-ul- Rahman ◽  
Momena Habib ◽  
Muhammad Zubair Shabbir

Introduction:Newcastle Disease (ND), caused by Avian avulavirus 1 (AAvV 1, avulaviruses), is a notifiable disease throughout the world due to the economic impact on trading restrictions and its embargoes placed in endemic regions. The feral birds including aquatic/migratory birds and other wild birds may act as natural reservoir hosts of ND Viruses (NDVs) and may play a remarkable role in the spread of the virus in environment. In addition, other 19 avulaviruses namely: AAvV 2 to 20, have been potentially recognized from feral avian species.Expalantion:Many previous studies have investigated the field prevailing NDVs to adapt a wide range of susceptible host. Still the available data is not enough to declare the potential role of feral birds in transmission of the virus to poultry and/or other avian birds. In view of the latest evidence related to incidences of AAvVs in susceptible avian species, it is increasingly important to understand the potential of viruses to transmit within the domestic poultry and other avian hosts. Genomic and phylogenomic analysis of several investigations has shown the same (RK/RQRR↓F) motif cleavage site among NDV isolates with same genotypes from domestic poultry and other wild hosts. So, the insight of this, various semi-captive/free-ranging wild avian species could play a vital role in the dissemination of the virus, which is an important consideration to control the disease outbreaks. Insufficient data on AAvV 1 transmission from wild birds to poultry and vice versa is the main constraint to understand about its molecular biology and genomic potential to cause infection in all susceptible hosts.Conclusion:The current review details the pertinent features of several historical and contemporary aspects of NDVs and the vital role of feral birds in its molecular epidemiology and ecology.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2260
Author(s):  
Letizia Zanetti ◽  
Maria Regoni ◽  
Elena Ratti ◽  
Flavia Valtorta ◽  
Jenny Sassone

AMPA receptors (AMPARs) are ionotropic glutamate receptors that play a major role in excitatory neurotransmission. AMPARs are located at both presynaptic and postsynaptic plasma membranes. A huge number of studies investigated the role of postsynaptic AMPARs in the normal and abnormal functioning of the mammalian central nervous system (CNS). These studies highlighted that changes in the functional properties or abundance of postsynaptic AMPARs are major mechanisms underlying synaptic plasticity phenomena, providing molecular explanations for the processes of learning and memory. Conversely, the role of AMPARs at presynaptic terminals is as yet poorly clarified. Accruing evidence demonstrates that presynaptic AMPARs can modulate the release of various neurotransmitters. Recent studies also suggest that presynaptic AMPARs may possess double ionotropic-metabotropic features and that they are involved in the local regulation of actin dynamics in both dendritic and axonal compartments. In addition, evidence suggests a key role of presynaptic AMPARs in axonal pathology, in regulation of pain transmission and in the physiology of the auditory system. Thus, it appears that presynaptic AMPARs play an important modulatory role in nerve terminal activity, making them attractive as novel pharmacological targets for a variety of pathological conditions.


Author(s):  
Syed Far Abid Hossain ◽  
Xu Shan ◽  
Abdul Qadeer

The purpose of this paper is to ascertain the contemporary role of mobile phones in value co-creation through social media marketing. How mobile phones, in particular, smartphones with the help of numerous social media generate value co-creation, is the key objective of this study. A random sampling method was used to conduct a survey in different universities in China to identify the role of mobile phones in value co-creation. Findings from primary data collection indicated that mobile phones play a vital role in value co-creation because of the extensive use of social media. If value co-creation through social media marketing develops with the help of producers, suppliers and other intermediaries with the necessary technology and trust, the society, as well as customers, may enjoy a unique way of shopping. Future studies with mixed methodology and respondents who use different social media as a tool to generate value co-creation may shed light on the undiscovered phenomenon of social media marketing in the context of the mobile phone.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Holly R. Chinnery ◽  
Kate E. Keller

Cellular communication is an essential process for the development and maintenance of all tissues including the eye. Recently, a new method of cellular communication has been described, which relies on formation of tubules, called tunneling nanotubes (TNTs). These structures connect the cytoplasm of adjacent cells and allow the direct transport of cellular cargo between cells without the need for secretion into the extracellular milieu. TNTs may be an important mechanism for signaling between cells that reside long distances from each other or for cells in aqueous environments, where diffusion-based signaling is challenging. Given the wide range of cargoes transported, such as lysosomes, endosomes, mitochondria, viruses, and miRNAs, TNTs may play a role in normal homeostatic processes in the eye as well as function in ocular disease. This review will describe TNT cellular communication in ocular cell cultures and the mammalian eye in vivo, the role of TNTs in mitochondrial transport with an emphasis on mitochondrial eye diseases, and molecules involved in TNT biogenesis and their function in eyes, and finally, we will describe TNT formation in inflammation, cancer, and stem cells, focusing on pathological processes of particular interest to vision scientists.


2011 ◽  
Vol 439 (3) ◽  
pp. 349-378 ◽  
Author(s):  
Anthony J. Morgan ◽  
Frances M. Platt ◽  
Emyr Lloyd-Evans ◽  
Antony Galione

Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling.


2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Alexander B. Smith ◽  
Joshua Soto Ocana ◽  
Joseph P. Zackular

ABSTRACT Clostridioides difficile is a Gram-positive, spore-forming, anaerobic bacterium that infects the human gastrointestinal tract, causing a wide range of disorders that vary in severity from mild diarrhea to toxic megacolon and/or death. Over the past decade, incidence, severity, and costs associated with C. difficile infection (CDI) have increased dramatically in both the pediatric and adult populations. The factors driving this rapidly evolving epidemiology remain largely unknown but are likely due in part to previously unappreciated host, microbiota, and environmental factors. In this review, we will cover the risks and challenges of CDI in adult and pediatric populations and examine asymptomatic colonization in infants. We will also discuss the emerging role of diet, pharmaceutical drugs, and pathogen-microbiota interactions in C. difficile pathogenesis, as well as the impact of host-microbiota interactions in the manifestation of C. difficile-associated disease. Finally, we highlight new areas of research and novel strategies that may shed light on this complex infection and provide insights into the future of microbiota-based therapeutics for CDI.


Open Medicine ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. 409-419 ◽  
Author(s):  
Muhammad Manwar Hussain ◽  
Mukhtarul Hassan ◽  
Noor Shaik ◽  
Zeeshan Iqbal

AbstractAccording to the universal biological findings, cellular bodies are covered with an intense coating of glycans. Diversity of glycan chains, linked to lipids and proteins is due to isomeric and conformational modifications of various sugar residues, giving rise to unique carbohydrate structures with a wide range of sequences and anomeric configurations. Proteins and lipids, carrying specific sugar residues (like Galactose) with particular stereochemical properties (sequence, anomery and linkages) are involved in broad spectrums of biological processes, including intercellular and intracellular interactions, microbial adhesion and cellular signaling. By studying the role of specific seterochemical features of galactose (Gal), we have improved our understanding about the normal physiology and diseases in human bodies.


Sign in / Sign up

Export Citation Format

Share Document