scholarly journals KAJI PERFORMANSI REFRIGERAN R-290, R-32, DAN R-410A SEBAGAI ALTERNATIF PENGGANTI R-22

2021 ◽  
Vol 4 ◽  
pp. 133-139
Author(s):  
Rikhard Ufie ◽  
Cendy S. Tupamahu ◽  
Sefnath J. E. Sarwuna ◽  
Jufraet Frans

Refrigerant R-22 is a substance that destroys the ozone layer, so that in the field of air conditioning it has begun to be replaced, among others with refrigerants R-32 and R-410a, and also R-290. Through this research, we want to know how much Coefficient of Performance (COP) and Refrigeration Capacity (Qe) can be produced for the four types of refrigerants. The study was carried out theoretically for the working conditions of the vapor compression cycle with an evaporation temperature (Tevap) of 0, -5, and -10oC, a further heated refrigerant temperature (ΔTSH) of 5 oC, a condensation temperature (Tkond) of 45 oC and a low-cold refrigerant temperature. (ΔTSC) 10 oC and compression power of 1 PK . The results of the study show that the Coefficient of Performance (COP) in the use of R-22 and R-290 is higher than the use of R-32 and R-410a, which are 4,920 respectively; 4,891; 4.690 and 4.409 when working at an evaporation temperature of 0 oC; 4.260; 4,234; 4.060 and 3.812 when working at an evaporation temperature of -5 oC; and amounted to 3,730; 3,685; 3,550 and 3,324 if working at an evaporation temperature of -10 oC. Based on the size of the COP, if this installation works with a compression power of 1 PK, then the cooling capacity of the R-22 and R-290 is higher than the R-32 and R-410a, which are 3,617 respectively. kW; 3,597 kW; 3,449 kW and 3,243 kW. If working at an evaporation temperature of 0 oC; 3.133 kW; 3.114 kW; 2,986 kW and 2,804 kW if working at an evaporation temperature of -5 oC; and 2,741 kW; 2,710 kW; 2,611 kW and 2,445 kW if working at an evaporation temperature of -10oC.

Author(s):  
Yilin Du ◽  
Jan Muehlbauer ◽  
Jiazhen Ling ◽  
Vikrant Aute ◽  
Yunho Hwang ◽  
...  

A rechargeable personal air-conditioning (RPAC) device was developed to provide an improved thermal comfort level for individuals in inadequately cooled environments. This device is a battery powered air-conditioning system with the phase change material (PCM) for heat storage. The condenser heat is stored in the PCM during the cooling operation and is discharged while the battery is charged by using the vapor compression cycle as a thermosiphon loop. The conditioned air is discharged towards a single person through adjustable nozzle. The main focus of the current research was on the development of the cooling system. A 100 W cooling capacity prototype was designed, built, and tested. The cooling capacity of the vapor compression cycle measured was 165.6 W. The PCM was recharged in nearly 8 hours under thermosiphon mode. When this device is used in the controlled built environment, the thermostat setting can be increased so that building air conditioning energy can be saved by about 5–10%.


2019 ◽  
Vol 124 (1274) ◽  
pp. 499-532
Author(s):  
M. Merzvinskas ◽  
C. Bringhenti ◽  
J.T. Tomita ◽  
C.R. de Andrade

ABSTRACTThis paper presents a review of the various aeronautical air conditioning systems that are currently available and discusses possible system configurations in the context of the aeronautical environmental control systems. Descriptions of the standard vapor compression cycle and air cycles are provided. The latter includes, simple-cycle, bootstrap-cycle, simple-bootstrap cycle (3-wheel) and condensing cycle (4-wheel). Water separation and air recirculation systems are also explored. A comparison between vapor compression cycles and air cycles is provided, as well as a comparison between different air cycles. Air cycle units are far less efficient than vapor compression cycle units, but they are lighter and more reliable for an equivalent cooling capacity. Details regarding the aircraft conceptual design phase along with general criteria for the selection of an air conditioning system are provided. Additionally, industry trends and technological advances are examined. Conclusions are compiled to guide the systems engineer in the search for the most appropriate design for a particular application.


Author(s):  
Brandon Hencey ◽  
Neera Jain ◽  
Bin Li ◽  
Andrew Alleyne

In vapor compression cycle (VCC) systems, it is desirable to effectively control the thermodynamic cycle. By controlling the thermodynamic states of the refrigerant with an inner-loop, supervisory algorithms can manage critical objectives such as maintaining superheat and maximizing the coefficient of performance, etc. In the HVAC industry, it is generally preferred to tune multiple single-input-single-output (SISO) control inner-loops rather than a single multiple-input-multiple-output (MIMO) control inner-loop. This paper presents a process by which a simplified feedback control structure amenable to a decoupled SISO control loop design may be identified. In particular, the many possible candidate input-output pairs for decentralized control are sorted via a decoupling metric, the relative gain array number. From a reduced set of promising candidate input-output pairs, engineering insight is applied to arrive at the final pairings successfully verified on a refrigeration test stand.


Author(s):  
Trisham Bharat Patil

This paper includes the methodology and avenues of approach involved in a comprehensive design of a Vapor Compression Cycle (VCC) for a Heating, Ventilating, and Air Conditioning (HVAC) system accommodating a mobile hospital. The development and deployment of this hospital is in response to the current global COVID-19 pandemic and its regional effect on existing local care facilities.


Author(s):  
Abdullah Alabdulkarem ◽  
Michael Cristiano ◽  
Yunho Hwang ◽  
Reinhard Radermacher

Packaged terminal air conditioning (PTAC) systems are typically utilized for space heating and cooling in hotels and apartment buildings. However, they cool the air to low temperature for dehumidification and some reheating may be required to resolve overcooling. A prototype of a solid desiccant wheel assisted separate sensible and latent cooling (SSLC) PTAC system was designed and constructed, which has a cooling capacity of 3.5 kW. The heat exchangers and vapor compression cycle were modeled in in-house software, CoilDesigner and VapCyc. The modeling results show improvement in the coefficient of performance from 3.12 to 4.05 or 30%. Cost study was conducted to evaluate the economics of SSLC PTAC units within the U.S. climate conditions. The study shows the payback period for the national average could be as low as 2 years. The system was experimentally tested and its performance was not as expected due to some design challenges. This paper highlights the lessons learned from the modeling and experimental work and discusses the economic analysis in addition to future design improvements and system optimization.


Author(s):  
David W. Gerlach

In electroosmotic dehumidification (EOD), a membrane composed of a desiccant material removes moisture from air to be conditioned. Then the water is pumped through pores in the membrane by the application of a voltage and rejected on the other side. This allows the sensible and latent loads in air conditioning to be handled separately and may lead to improvements in energy efficiency and comfort control. The performance of an air conditioning system using an electroosmotic dehumidification system in series with a conventional vapor compression cycle was modeled. The electroosmotic system handles the entire latent load and the vapor compression system handles the entire sensible cooling load. Performance of the system was compared to a conventional vapor compression air conditioner that handles both the latent and sensible loads with a single evaporator coil. Literature data for Nafion membranes was used in a simple electroosmotic drag model. Modeling indicates the feasibility of electroosmotic dehumidification for separating the control of latent and sensible load in air conditioning systems. The total COP of the system, neglecting fan power, can be 1–2 times higher (depending on airflow rate) than a system using an evaporator for latent and sensible load.


2020 ◽  
Vol 1 (2) ◽  
pp. 37-43
Author(s):  
Ibrahim F. Abdulqadir ◽  
Badran M. Salim ◽  
Omar Shamdeen

The present work deal with the experimental study to retrofit the refrigerant R407c with the refrigerant R22 in the air conditioning unit at an ambient temperature range between 30-45°C. The main component of the experimental rig includes a window air conditioner with a refrigeration capacity of 2 Ton refrigeration that used refrigerant R22 as a working fluid in the experimental work. The refrigerant R22 is replaced with refrigerant R407C due to similar operation properties for the two refrigerants. The experimental results displayed the refrigeration effect and coefficient of performance COP of the R22 system are high as with those of the R407C system. The falls in the evaporator and condenser for the R407C system is lower than that of the R22 system. The temperature of discharge in the compressor for the system of refrigerant R22 is greater than that of the R407C system. Moreover, condensation temperature along the tube of the condenser is decreased with the increase of the distance for both refrigerants. The refrigerant R407C may be selected as a good alternate for R22 with an agreement difference in the two refrigerants’ performance. The system did not require replacement for any part of the AC unit.


Author(s):  
Sharmas Vali Shaik ◽  
TP Ashok Babu

The present investigation focuses on theoretical performance of various new environment-friendly refrigerant mixtures as substitutes to high global warming potential refrigerant R22. In this investigation, 34 refrigerants were considered at various composition. In this work, both complex vapor compression cycle (actual cycle) and standard vapor compression cycle (ideal cycle) was considered for the performance assessment of refrigerants. Vital studies such as flammability, toxicity, and environmental impact of various novel refrigerants were also carried out in this study. Results obtained from actual cycle showed that the coefficient of performance of refrigerant mixture RM40 (R1270/R134a 90/10 in mass %) (2.728) was the greatest among 34 investigated alternatives and it was closer to the coefficient of performance of R22 (2.770). Compressor discharge temperature of RM40 was 13.36 ℃ lower when compared with R22. Volumetric refrigeration capacity of RM40 (3335 kJ/m3) was slightly higher than that of R22 (3297 kJ/m3). Power spent per ton of refrigeration of RM40 (1.288 kW/TR) was marginally higher than that of R22 (1.269 kW/TR). Global warming potential (GWP100) of RM40 (133) was very low compared to the GWP100 of R22 (1760). Total equivalent warming index (environmental impact) of RM40 was 5.61% lower than R22. However, performance results obtained from standard cycle for various investigated refrigerants were better than actual cycle, since various losses occur were neglected in the standard cycle. Overall, thermodynamic performance of refrigerant mixture RM40 (R1270/R134a 90/10 in mass %) obtained from both actual and standard cycle was the highest among 34 investigated refrigerants and it was very closer to the performance of R22 and hence, it could be considered as an environment-friendly alternative to replace high GWP refrigerant R22 used in refrigeration systems.


2021 ◽  
Vol 1 (1) ◽  
pp. 23
Author(s):  
M.Pramuda Nugraha Sirodz ◽  
Lucyana Balqis

Abstrak Buncis merupakan salah satu produk pertanian di Indonesia yang diekspor ke luar negeri. Setelah dipanen, buncis disimpan untuk diproses sebelum diekspor ke konsumen. Kesegaran buncis umumnya hanya bertahan selama 1 minggu, oleh karena itu diperlukan alat khusus untuk mempertahankan kesegaran buncis sebelum diekspor ke konsumen. Untuk mempertahankan kesegaran buncis, temperatur udara 4°C-7°C dengan kelembaban 90%-95% perlu dipertahankan. Dengan menggunakan cold strorage, kondisi ruang penyimpanan dapat diatur sedemikian rupa agar memenuhi kriteria tersebut. Pada penelitian ini dirancang sebuah cold storage dengan kapasitas 10 ton untuk tanaman buncis. Cooling Load Temperatur Difference (CLTD) pada perancangan ini diatur bulan dan waktunya yang disesuaikan dengan posisi dari cold storage. Beban pendinginan total untuk 10 ton buncis adalah sebesar 46,73 kW. Cold storage hasil rancangan menggunakan siklus kompresi uap dengan fluida refrigeran R134a tanpa menggunakan humidifier. Untuk mempertahankan kondisi udara pada cold storage agar sesuai dengan kebutuhan, kompressor AC dengan kapasitas 12,7 kW digunakan pada siklus kompresi uap. Performa dari siklus kompresi uap dengan kondisi operasi tersebut ditentukan oleh Coefficient of Performance (COP). Semakin besar nilai COP, maka sistem  semakin efisien. Coefficient of Performance (COP) dari siklus tersebut adalah sebesar 3,84. Kata kunci: Buncis, CLTD, Refrigeran, COP, Siklus kompresi uap Abstract                                                                                                                                                                                                            Snap beans are one of Indonesian acgricultural product exported to overseas. After harvested, snap beans were stored before exported to consumers. The freshness of the snap beans only lasted for one week, therefor special equipment were required to maintain the snap beans freshness. To maintain the freshness, snap beans must be storage in a room with 4-7°C air temperature and 90-95% humidity. In this research, cold storage was designed for 10 tons of snap beans. Cooling Load Temperature Difference method was used to determine the load of the cold storage based on the position of the building. The total cooling load for 10 tons of snap beans were 46,73 kW. The cold storage was using vapor compression cycle with  refrigerant 134a without humidifier . The cycle requires compressor power of 12,7 kW to maintain the condition in the cold storage room. The performance of the cycle was determined from the Coefficient of Performance (COP). The higher value of the COP, the system will be more efficient. The COP of the vapor compression cycle  was 3,84.   Key words: Snap Beans, Export, Refrigerant, Storage, Humidity.


Sign in / Sign up

Export Citation Format

Share Document