The effect of thermal processing parameters on the mechanical properties of aluminium alloy foam

Author(s):  
D. Puspitasari ◽  
T.L. Ginta ◽  
P. Puspitasari ◽  
M. Mustapha

Purpose: The purpose of this study was to investigate the influence of three thermal processing parameter called stress relieving on mechanical properties of the aluminium alloy foam. Design/methodology/approach: The samples were undergone by stress relieving method using vacuum furnace. Hardness measurement was carried out using microhardness Vickers at 150 mN load and 15 s loading time. Compressive strength, plateau stress and energy absorption were calculated using a universal testing machine. Findings: It was found that the highest value of hardness of 192.78 Hv was obtained when the stress relieving process is set with the following parameters: heating (500°C); holding time (120 min) and stabilization temperature (450°C). Since higher heating temperature and longer holding time produce sample with larger grain size and has an adverse effect on the hardness value It was revealed that the mechanical properties of aluminium alloy foam were enhanced when the heating temperature was decreased, holding temperature was diminished and the stabilization temperature was increased. Overall, the presented results showed that the thermal processing parameters such as heating temperature, holding time and stabilization temperature have a significant influence on improving the mechanical properties of aluminium alloy foam. Research limitations/implications: The properties of closed-cell aluminium alloy foam are highly sensitive and depend on the post heat treatment process. The processing parameters should be controlled in order to manipulate the properties of closed-cell aluminium alloy foam. Originality/value: To investigate the influences of these processing parameters on the physical and mechanical properties of the closed-cell aluminium alloy foam.

2018 ◽  
Vol 2 (89) ◽  
pp. 55-63
Author(s):  
D. Puspitasari ◽  
T.L. Ginta ◽  
M. Mustapha ◽  
N. Sallih ◽  
P. Puspitasari

Purpose: This study concerns about the influence of stress relieving parameters on the hardness of closed cell aluminium foam using central composite design. Design/methodology/approach: The responses of three stress relieving parameters: heating temperature, holding time and stabilization temperature are studied and analysed through 20 experimental runs designed according to central composite design. The results of microhardness test corresponded to the microstructural evaluation of closed-cell aluminium foam using optical microscope. Analysis of Variance (ANOVA) technique is employed to study the significance of each parameter on the microhardness property. In this process the design has five levels for each parameter. The stress relieving process of the samples were performed using a vacuum furnace. The hardness test was conducted using a micro hardness tester LM247AT and the microstructure of the samples were obtained using optical microscopy technique. Findings: It was found that the highest value of hardness of 192.78 HV was obtained when the stress relieving process is set with the following parameters: heating (500°C); holding time (120 min) and stabilization temperature (450°C). Since higher heating temperature and longer holding time produce sample with larger grain size and has an adverse effect on the hardness value. Research limitations/implications: Liquid metal and powder metallurgical processing still produces a non-uniform and poorly reproducible cellular structure. This cellular structure demonstrates poor quality difference on decomposition and melting temperature, called anisotropic early expansion. Originality/value: To improve the poor cellular structure quality, stress relieving method is proposed in this study. Stress relieving method can improve the microstructure of the material.


Author(s):  
M. F. M. Tajudin ◽  
A. H. Ahmad ◽  
M. M. Rashidi

This paper highlights the effects of pouring temperature and holding time on the mechanical properties of aluminium 6061 semisolid feedstock billets. The semisolid metal feedstock billets were prepared by a direct thermal method (DTM), in which the molten metal was poured into a cylindrical copper mould with a different combination of pouring temperature and holding time before it was solidified in room temperature water. The results show that the sample with pouring temperature slightly above aluminium 6061 liquidus temperature has the lowest porosity, thereby the highest mechanical properties value. The sample with a pouring temperature of 660 °C and holding time of 60 s has the density, tensile strength and hardness properties of 2.701 g/cm3, 146.797 MPa, and 86.5 HV, respectively. Meanwhile, the sample at a pouring temperature of 640 °C and holding time of 20 s has density, tensile strength and hardness properties of 2.527 g/cm3, 65.39 MPa, and 71.79 HV, respectively. The density and fractography tests were conducted to confirm the existence of porosity within the samples. The results from these experimental works suggested that the mechanical properties of DTM semisolid feedstock billet merely depended on processing parameters, which influenced the porosity level within the feedstock billet, thus directly affected their mechanical properties.


2016 ◽  
Vol 666 ◽  
pp. 245-256 ◽  
Author(s):  
M.A. Islam ◽  
M.A. Kader ◽  
P.J. Hazell ◽  
A.D. Brown ◽  
M. Saadatfar ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
pp. 29
Author(s):  
Lai Dang Giang ◽  
Nguyen Anh Tuan ◽  
Dao Van Luu ◽  
Nguyen Vinh Du ◽  
Nguyen Manh Tien

The mechanical properties of thixoextrusion components can be improved by controllable processing parameters such as the solid fraction of alloy, holding time, punch velocity, heat treatment and die temperature. In this study, the effects of thixoforming parameters on the microstructures and mechanical properties of thixoextrusion ADC12 alloy Aptomat Contact are studied. ADC12 has excellent castability with high fluidity and low shrinkage rate, so it is widely used in industry, especially in automotive and motorcycle engine part casting. It is a near eutectic alloy with high strength and low ductility (1%). The optimization parameters mechanical properties were investigated by changing the punch velocity, specimen temperature and holding time. The results also indicated optimal value at punch velocity (15 mm/s), specimen temperature (560 °C) and holding time (5 min) which was changed microstructure from eutectic dendrite to globular grain, increasing the ductility (3.3%) of this alloy during the semi-solid forming process while the remaining mechanical properties lead to an increase in the quality of finished parts.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1414
Author(s):  
Yong Guk Son ◽  
Sung Soo Jung ◽  
Yong Ho Park ◽  
Young Cheol Lee

This study reports the microstructural changes and mechanical properties of high-strength aluminum alloy chips prepared in the semi-solid state at different temperatures, pressures, and holding times. In semi-solid processes, these processing parameters must be optimized because they affect the microstructure and mechanical properties of the chips. In microstructural analysis, these parameters clearly influenced the spheroidization of the aluminum matrix. The aluminum matrix was uniformly spheroidized after semi-solid processing, and the densities of the final samples increased with the holding time. After 30 min holding time at a given temperature, the density approached the theoretical density, but the compressive strength of the samples seriously deteriorated. Meanwhile, fracture surface investigation revealed a deformed Mg2Si phase, which is formed through a eutectic reaction. The strength of this phase significantly decreased after increasing the holding time of the semi-solid processing from 10 to 30 min. Therefore, deformation of the Mg2Si phase caused by diffusion of aluminum into this phase can be a key factor for the decrease in the mechanical properties of samples fabricated with 30 min holding time.


2011 ◽  
Vol 239-242 ◽  
pp. 517-523 ◽  
Author(s):  
Bing Yan Jiang ◽  
Lei Chen ◽  
Dai Bing Li ◽  
Stefan Kirchberg

In this paper reflow process is integrated into LIGA process in order to realize three dimensional fabrication. The melting and deformation process of photoresist, which has an initial cylindrical shape of D500μm and h66μm, and the influence of various processing parameters on the height of formed microlens, is simulated with Marc. The optimum processing parameters combination is obtained by orthogonal experiment method and the influence of different processing parameters on the height of micro-spherical structure is studied with single factor experiment method. The results showed that the optimum processing parameters combination was 1°C /s for heating rate, 110°C for heating temperature and 45min for holding time; the significance of processing parameters on the micro-spherical structure’s height can be ordered in holding time>heating rate>heating temperature.


Author(s):  
Steven Wong ◽  
Hani E. Naguib ◽  
Chul B. Park

In this study, the effects of processing parameters on the cellular morphologies and mechanical properties of TPO70 (Thermoplastic Polyolefin) microcellular foams are investigated. Microcellular closed cell TPO70 foams were prepared using a two-stage batch process method. The microstructure of these foamed samples was controlled by carefully altering the processing parameters such as saturation pressure, foaming temperature and foaming time. The foam morphologies were characterized in terms of the cell density, foam density and average cell size. Elastic modulus, tensile strength, and elongation at break of the foamed TPO70 samples were measured for different cell morphologies. The findings show that the mechanical properties were significantly affected by the foaming parameters which varied with the cell morphologies. The experimental results can be used to predict the microstructure and mechanical properties of microcellular polymeric TPO70 foams prepared with different processing parameters.


2018 ◽  
Vol 190 ◽  
pp. 10007
Author(s):  
Hasan Hijji ◽  
Yi Qin ◽  
Kunlan Haung ◽  
Muhammad Bin Zulkipli ◽  
Jie Zhao

There is an increased demand for miniature/micro products (such as MEMS) and nanotechnology-based products (such as nano-materials). Micro-manufacturing is a link between Macro-and Nano Manufacturing and an effective means for transferring nanotechnology-product designs into volume production. The micro forming has the potential for low-cost, high volume manufacturing applications. In order to meet the high demands on miniaturised products, a rapid production technique and the system, high flexibility, cost-effectiveness and processing a wide range of materials are needed. Recently, a series of studies have been undertaken to investigate forming miniature/micro-components by using a combination of micro-forming and Electrical-field activated sintering (Micro-FAST). The process uses low voltage and high current density, pressure-assisted densification and synthesis technique, which renders several significant merits. The work to be reported in this paper will be focused on the forming of miniature components from Zirconia (ZrO2) powder, without using binders. Several processing parameters have been investigated, such as pressure, heating rate, heating temperature and holding time, which helped to obtain high-quality parts. Using graphite dies and punches, sample parts (solid cylinders of Ø4.00mm × 4.00 mm) were formed. These were subjected to detailed examinations and analysis, such as analysis of the relative density, hardness at the necks formed among the particles and in the particle bodies, as well as the microstructures. The results showed that directly forming the parts from loose powder is feasible, and by properly designing and control the processing parameters, high-quality parts could be achieved, among which heating temperature and holding time are extremely important. At the same time, due to low conductivity of the powder material, carefully designing the tooling is essentials for ensuring properly heating, pressurisation and cooling.


2014 ◽  
Vol 881-883 ◽  
pp. 1301-1306
Author(s):  
Chaiyoot Meengam ◽  
Prapas Muangjunburee ◽  
Suppachai Chainarong

SSM 356-T6 aluminium alloys generally present low weldability by fusion methods because of the sensitivity to weld solidification cracking, porosities, change microstructure in weld zone and other defects in the fusion zone. Diffusion bonding can be deployed successfully with aluminium alloys. This paper presents the technique to conserve the globular weld structure of SSM 356-T6 aluminium alloy. The effect of joining parameters on the microstructure and mechanical properties of diffusion bonding butt joints of semi-solid metal 356-T6 aluminium alloy were investigated by conditions as follows: contact pressure at 0.4, 0.9, 1.8, 2.4 and 2.7 MPa, for 3 hours holding time and temperature at 495°C under argon atmosphere at 4 liters per minute. The results showed that condition used contact pressure 2.4 MPa, with 3 hours holding time and temperature at 495°C, under argon atmosphere provided. The highest joint strength reaching to 182.2 MPa, which had joint efficiency of 61.34 percents compared with base material. In addition, microstructure in welded zone after welding is still in globular structure, but the grain size was increased when the higher bonding temperature was used. The results of this investigation have shown that an average hardness is around 121.2 HV.


Sign in / Sign up

Export Citation Format

Share Document