redox transitions
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2438
Author(s):  
Vladimir Lyutov ◽  
Varvara Kabanova ◽  
Oxana Gribkova ◽  
Alexander Nekrasov ◽  
Vessela Tsakova

Electrochemically synthesized poly(3,4,-ethylenedioxythiophene) (PEDOT) films obtained in the presence of eight different polysulfonate dopants are comparatively studied by means of electrochemical quartz crystal microbalance (EQCM) and X-ray Photoelectron Spectroscopy (XPS). Differences with respect to oxidation and doping levels (OL and DL), polymerization efficiency and redox behavior are revealed based on the interplay of three factors: the type of the dopant (acid or salt form), flexibility of the polysulfonate chains and molecular weight of the polysulfonate species. For the rigid- and semi-rigid-chain dopants, use of the salt form results in higher OL and DL values and substantial involvement of solvent molecules in the course of polymerization and redox transitions whereas in the presence of their acid form compact PEDOT films with minor ionic-solvent fluxes upon redox transitions are formed. In contrast, use of the salt form of the flexible chain polysulfonates results in PEDOT with lower OL and DL in comparison to the corresponding acid form. Significant effects are observed when comparing flexible chain dopants with different molecular weights. From a practical point of view the present investigations demonstrate the large scope of possibilities to influence some basic properties of PEDOT (Ol and DL, intensity and type of the ionic and solvent fluxes upon redox transition) depending on the used polysulfonate dopants.


2021 ◽  
Author(s):  
Feifei Xing ◽  
Xixun Shen ◽  
Yongxiang Chen ◽  
Xuran Liu ◽  
TianTian Chen ◽  
...  

ZnNi0.5Mn0.5CoO4@C with a spinel structure was made via a sol–gel and high-temperature sintering process exhibits excellent electrochemical performance due to reversible multivalence redox transitions (Co4+/Co3+, Ni4+/Ni3+/Ni2+, and Mn4+/Mn3+).


2020 ◽  
Vol 117 (52) ◽  
pp. 33043-33050
Author(s):  
Sebastiaan J. van de Velde ◽  
Christopher T. Reinhard ◽  
Andy Ridgwell ◽  
Filip J. R. Meysman

For most of Earth’s history, the ocean’s interior was pervasively anoxic and showed occasional shifts in ocean redox chemistry between iron-buffered and sulfide-buffered states. These redox transitions are most often explained by large changes in external inputs, such as a strongly altered delivery of iron and sulfate to the ocean, or major shifts in marine productivity. Here, we propose that redox shifts can also arise from small perturbations that are amplified by nonlinear positive feedbacks within the internal iron and sulfur cycling of the ocean. Combining observational evidence with biogeochemical modeling, we show that both sedimentary and aquatic systems display intrinsic iron–sulfur bistability, which is tightly linked to the formation of reduced iron–sulfide minerals. The possibility of tipping points in the redox state of sediments and oceans, which allow large and nonreversible geochemical shifts to arise from relatively small changes in organic carbon input, has important implications for the interpretation of the geological rock record and the causes and consequences of major evolutionary transitions in the history of Earth’s biosphere.


2020 ◽  
Vol 17 (18) ◽  
pp. 4707-4726 ◽  
Author(s):  
James Z. Sippo ◽  
Isaac R. Santos ◽  
Christian J. Sanders ◽  
Patricia Gadd ◽  
Quan Hua ◽  
...  

Abstract. A massive mangrove dieback event occurred in 2015–2016 along ∼1000 km of pristine coastline in the Gulf of Carpentaria, Australia. Here, we use sediment and wood chronologies to gain insights into geochemical and climatic changes related to this dieback. The unique combination of low rainfall and low sea level observed during the dieback event had been unprecedented in the preceding 3 decades. A combination of iron (Fe) chronologies in wood and sediment, wood density and estimates of mangrove water use efficiency all imply lower water availability within the dead mangrove forest. Wood and sediment chronologies suggest a rapid, large mobilization of sedimentary Fe, which is consistent with redox transitions promoted by changes in soil moisture content. Elemental analysis of wood cross sections revealed a 30- to 90-fold increase in Fe concentrations in dead mangroves just prior to their mortality. Mangrove wood uptake of Fe during the dieback is consistent with large apparent losses of Fe from sediments, which potentially caused an outwelling of Fe to the ocean. Although Fe toxicity may also have played a role in the dieback, this possibility requires further study. We suggest that differences in wood and sedimentary Fe between living and dead forest areas reflect sediment redox transitions that are, in turn, associated with regional variability in groundwater flows. Overall, our observations provide multiple lines of evidence that the forest dieback was driven by low water availability coinciding with a strong El Niño–Southern Oscillation (ENSO) event and was associated with climate change.


Author(s):  
N.N. Iksat ◽  
S.B. Zhangazin ◽  
A.A. Madirov ◽  
R.T. Omarov

The soil is a reservoir of various contaminants with heavy metals and has a strong cation exchange property. Among these heavy metals, molybdenum is an essential element that is required in small quantities for optimal plant growth and development. This useful heavy metal performs several biochemical and physiological tasks in plants and is also considered as an important component of various cellular enzymes and is actively involved in redox reactions. Mononuclear molybdenum-containing enzymes, as a rule, have a certain conserved metal center, coordinated by one or two pyranopterins. The pyranopterin fragment plays a key role in the properties of the metal site in the group of mononuclear enzymes of molybdenum with various functions: coordination; stabilization and modulation of the redox transitions of the center, acting as a redox buffer; and for redox regulation/compliance in a variety of catalytic reactions. The coordination sphere of the metal is equipped with oxygen and/or sulfur, selenium atoms in various forms. Tungsten is an antagonist of molybdenum and inhibits molybdoenzymes. In the current review we elaborately reviewed various studies regarding heavy metals - molybdenum and tungsten, their uptake mechanism, essential transporters, and also discuss about the destructive properties of heavy metals in response to their concentration.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1029 ◽  
Author(s):  
Beatriz Martínez-Sánchez ◽  
Andrés Felipe Quintero-Jaime ◽  
Francisco Huerta ◽  
Diego Cazorla-Amorós ◽  
Emilia Morallón

In this study, the phosphonation of a polyaniline (PANI) backbone was achieved in an acid medium by electrochemical methods using aminophenylphosphonic (APPA) monomers. This was done through the electrochemical copolymerization of aniline with either 2- or 4-aminophenylphosphonic acid. Stable, electroactive polymers were obtained after the oxidation of the monomers up to 1.35 V (reversible hydrogen electrode, RHE). X-ray photoelectron spectroscopy (XPS) results revealed that the position of the phosphonic group in the aromatic ring of the monomer affected the amount of phosphorus incorporated into the copolymer. In addition, the redox transitions of the copolymers were examined by in situ Fourier-transform infrared (FTIR) spectroscopy, and it was concluded that their electroactive structures were analogous to those of PANI. From the APPA monomers it was possible to synthesize, in a controlled manner, polymeric materials with significant amounts of phosphorus in their structure through copolymerization with PANI.


2019 ◽  
Vol 2 (9) ◽  
pp. 6558-6568 ◽  
Author(s):  
Caleb T. Alexander ◽  
Robin P. Forslund ◽  
Keith P. Johnston ◽  
Keith J. Stevenson

Sign in / Sign up

Export Citation Format

Share Document