Evolution of Silk Anchor Structure as the Joint Effect of Spinning Behavior and Spinneret Morphology

Author(s):  
Jonas O Wolff ◽  
Peter Michalik ◽  
Alexandra M Ravelo ◽  
Mariella E Herberstein ◽  
Martín J Ramírez

Synopsis Spider web anchors are attachment structures composed of the bi-phasic glue-fiber secretion from the piriform silk glands. The mechanical performance of the anchors strongly correlates with the structural assembly of the silk lines, which makes spider silk anchors an ideal system to study the biomechanical function of extended phenotypes and its evolution. It was proposed that silk anchor function guided the evolution of spider web architectures, but its fine-structural variation and whether its evolution was rather determined by changes of the shape of the spinneret tip or in the innate spinning choreography remained unresolved. Here, we comparatively studied the micro-structure of silk anchors across the spider tree of life, and set it in relation to spinneret morphology, spinning behavior and the ecology of the spider. We identified a number of apomorphies in the structure of silk anchors that may positively affect anchor function: (1) bundled dragline, (2) dragline envelope, and (3) dragline suspension (“bridge”). All these characters were apomorphic and evolved repeatedly in multiple lineages, supporting the notion that they are adaptive. The occurrence of these structural features can be explained with changes in the shape and mobility of the spinneret tip, the spinning behavior, or both. Spinneret shapes generally varied less than their fine-tuned movements, indicating that changes in construction behavior play a more important role in the evolution of silk anchor assembly. However, the morphology of the spinning apparatus is also a major constraint to the evolution of the spinning choreography. These results highlight the changes in behavior as the proximate and in morphology as the ultimate causes of extended phenotype evolution. Further, this research provides a roadmap for future bioprospecting research to design high-performance instant line anchors.

2021 ◽  
Vol 118 (33) ◽  
pp. e2101296118
Author(s):  
Isabelle Su ◽  
Neosha Narayanan ◽  
Marcos A. Logrono ◽  
Kai Guo ◽  
Ally Bisshop ◽  
...  

Spiders are nature’s engineers that build lightweight and high-performance web architectures often several times their size and with very few supports; however, little is known about web mechanics and geometries throughout construction, especially for three-dimensional (3D) spider webs. In this work, we investigate the structure and mechanics for a Tidarren sisyphoides spider web at varying stages of construction. This is accomplished by imaging, modeling, and simulations throughout the web-building process to capture changes in the natural web geometry and the mechanical properties. We show that the foundation of the web geometry, strength, and functionality is created during the first 2 d of construction, after which the spider reinforces the existing network with limited expansion of the structure within the frame. A better understanding of the biological and mechanical performance of the 3D spider web under construction could inspire sustainable robust and resilient fiber networks, complex materials, structures, scaffolding, and self-assembly strategies for hierarchical structures and inspire additive manufacturing methods such as 3D printing as well as inspire artistic and architectural and engineering applications.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1130
Author(s):  
Mariana Pires Figueiredo ◽  
Ana Borrego-Sánchez ◽  
Fátima García-Villén ◽  
Dalila Miele ◽  
Silvia Rossi ◽  
...  

This work presents the development of multifunctional therapeutic membranes based on a high-performance block copolymer scaffold formed by polyether (PE) and polyamide (PA) units (known as PEBA) and layered double hydroxide (LDH) biomaterials, with the aim to study their uses as wound dressings. Two LDH layer compositions were employed containing Mg2+ or Zn2+, Fe3+ and Al3+ cations, intercalated with chloride anions, abbreviated as Mg-Cl or Zn-Cl, or intercalated with naproxenate (NAP) anions, abbreviated as Mg-NAP or Zn-NAP. Membranes were structurally and physically characterized, and the in vitro drug release kinetics and cytotoxicity assessed. PEBA-loading NaNAP salt particles were also prepared for comparison. Intercalated NAP anions improved LDH–polymer interaction, resulting in membranes with greater mechanical performance compared to the polymer only or to the membranes containing the Cl-LDHs. Drug release (in saline solution) was sustained for at least 8 h for all samples and release kinetics could be modulated: a slower, an intermediate and a faster NAP release were observed from membranes containing Zn-NAP, NaNAP and Mg-NAP particles, respectively. In general, cell viability was higher in the presence of Mg-LDH and the membranes presented improved performance in comparison with the powdered samples. PEBA containing Mg-NAP sample stood out among all membranes in all the evaluated aspects, thus being considered a great candidate for application as multifunctional therapeutic dressings.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract Perylenes and perinones are separate groups of pigments categorized within the carbonyl chemical class. The two pigment groups show similarities, for example, in their chemical structural features and, to an extent, in their technical and application properties as high-performance organic pigments. Perylenes constitute a series of firmly established high-performance pigments, offering red and violet colors, and also extending to black. Synthetically, they are derived from perylene-1,4,5,8-tetracarboxylic acid. The perylenes tend to be quite expensive pigments, but their high levels of fastness properties mean that they are suitable for highly demanding applications. In particular, they offer very high heat stability. Two perinone pigments are used commercially. In their synthesis from naphthalene-1,4,5,8-tetracarboxylic acid, they are formed as mixtures of the two isomers, which can be separated. The trans isomer, CI Pigment Orange 43, is a highly important commercial pigment, especially for plastics, while the cis isomer, CI Pigment Red 194, is bordeaux in color and is of much lesser importance. The perinone, CI Pigment Orange 43, provides a brilliant orange color and has very good fastness properties. Its commercial manufacture involves a challenging multistage procedure and consequently it is one of the most expensive organic pigments on the market.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3781
Author(s):  
Tianyu Wang ◽  
Yahong Zhao ◽  
Baosong Ma ◽  
Cong Zeng

The acid–alkaline-inducd corrosive environments inside wastewater concrete pipelines cause concrete structural deterioration and substantial economic losses all over the world. High-performance concrete/mortar (HPC) was designed to have better resistance to corrosive environments, with enhanced service life. However, the durability of HPC in wastewater pipeline environments has rarely been studied. A high-performance mortar mixture (M) reinforced by supplemental materials (including fly ash and silica fume) and polyvinyl alcohol (PVA) fibers, together with a mortar mixture (P) consisting of cement, sand and water with similar mechanical performance, were both designed and exposed to simulated wastewater pipeline environments. The visual appearance, dimensional variation, mass loss, mechanical properties, permeable pore volume, and microstructure of the specimens were measured during the corrosion cycles. More severe deterioration was observed when the alkaline environment was introduced into the corrosion cycles. Test results showed that the M specimens had less permeable pore volume, better dimensional stability, and denser microstructure than the P specimens under acid–alkaline-induced corrosive environments. The mass-loss rates of the M specimens were 66.1–77.2% of the P specimens after 12 corrosion cycles. The compressive strength of the M specimens was 25.5–37.3% higher than the P specimens after 12 cycles under corrosive environments. Hence, the high-performance mortar examined in this study was considered superior to traditional cementitious materials for wastewater pipeline construction and rehabilitation.


2013 ◽  
Vol 368-370 ◽  
pp. 1112-1117
Author(s):  
Jin Hui Li ◽  
Liu Qing Tu ◽  
Ke Xin Liu ◽  
Yun Pang Jiao ◽  
Ming Qing Qin

In order to solve the environment pollution of limestone powder during production of limestone manufactured sand and gravel and problem of lack of high quality fly ash or slag powder in ocean engineering, ultra-fine limestone powder was selected for preparation of green high-performance marine concrete containing fly ash and limestone powder and that containing slag powder and limestone powder for tests on workability, mechanical performance, thermal performance, shrinkage, and resistance to cracking and chloride ion permeability. And comparison was made between such green high-performance concrete and conventional marine concrete containing fly ash and slag powder. Moreover, the mechanism of green high-performance marine concrete was preliminary studied. Results showed that ultra-fine limestone powder with average particle size around 10μm had significant water reducing function and could improve early strength of concrete. C50 high-performance marine concrete prepared with 30% fly ash and 20% limestone powder or with 30% slag powder and 30% limestone powder required water less than 130kg/m3, and showed excellent workability with 28d compressive strength above 60MPa, 56d dry shrinkage rate below 300με, cracking resistance of grade V, 56d chloride ion diffusion coefficient not exceeding 2.5×10-12m2/s. Mechanical performance and resistance to chloride ion permeability of limestone powder marine concrete were quite equivalent to those of conventional marine concrete. But it had better workability, volume stability and cracking resistance. Moreover, it can serve as a solution to the lack of high quality fly ash and slag powder.


2022 ◽  
pp. 136943322110651
Author(s):  
Mizan Ahmed ◽  
Qing Quan Liang ◽  
Ahmed Hamoda

Circular concrete-filled double-skin steel tubular (CFDST) columns with external stainless-steel are high-performance composite columns that have potential applications in civil construction including the construction of offshore structures, bridge piers, and transmission towers. Reflecting the limited research performed on investigating their mechanical performance, this study develops a computationally efficient fiber model to simulate the responses of short and slender beam-columns accounting for the influences of material and geometric nonlinearities. Accurate material laws of stainless steel, carbon steel, and confined concrete are implemented in the mathematical modeling scheme developed. A new solution algorithm based on the Regula-Falsi method is developed to maintain the equilibrium condition. The independent test results of short and slender CFDST beam-column are utilized to validate the accuracy of the theoretical solutions. The influences of various column parameters are studied on the load-axial strain [Formula: see text] curves, load-lateral deflection [Formula: see text] curves, column strength curves, and interaction curves of CFDST columns. Design formulas are suggested for designing short and beam-columns and validated against the numerical results. The computational model is found to be capable of simulating the responses of CFDST short and slender columns reasonably well. Parametric studies show that the consideration of the concrete confinement is important for the accuracy of the prediction of their mechanical responses. Furthermore, high-strength concrete can be utilized to enhance their load-carrying capacity particularly for short and intermediate slender beam-columns. The strengths of CFDST columns computed by the suggested design model are in good agreement with the test and numerical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
D. Pérez-Rocha ◽  
A. B. Morales-Cepeda ◽  
F. Navarro-Pardo ◽  
T. Lozano-Ramírez ◽  
P. G. LaFleur

A comparative study of the mechanical performance of PP and PP/PP-g-MAH blends reinforced with carbon fibre (CF) obtained by two different moulding techniques is presented. Three filler contents were used for fabricating the composites: 1, 3, and 5 pph (parts per hundred). The crystallisation behaviour of the composites was studied by differential scanning calorimetry. Morphological and structural features of these samples were observed by atomic field microscopy and Fourier-transform infrared spectroscopy, respectively. Mechanical properties of the injection and compression moulded composites were evaluated by means of tensile and impact resistance tests. The fracture surface of the impacted samples was observed by scanning electron microscopy. The processing method had a noticeable effect on the results obtained in these tests. Young’s modulus was enhanced up to 147% when adding 5 pph CF to a PP matrix when processed by compression moulding. Addition of PP-g-MAH and CF had a favourable effect on the tensile and impact strength properties in most samples; these composites showed improved performance as the filler content was increased.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1794 ◽  
Author(s):  
Lu ◽  
Yi ◽  
Ning ◽  
Ge ◽  
S.M.

Meta-aramid fibrids (MAF) have attracted much attention. However, it is difficult for this high mechanical performance fiber to form sufficient interface adhesion between the MAF and polyurethane (PU) matrix due to the chemical inertness of its surface. Thus, the surface activity of MAF should be improved to obtain a high-performance MAF/PU composite. A novel methodology to modify the surface of MAF with a sodium dichloroisocyanurate solution (DCCNa) was developed to obtain chlorinated MAF (MAFC) in this study. A series of MAFC/PU composites was prepared by in situ polymerization processes. The results of Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated that the chlorine-contained chemical groups were introduced onto the MAF surfaces after chlorination. Dynamic contact angle analysis (DCAA) revealed that the surface wettability and the surface free energy of the MAFC were significantly improved, which allowed for strong chemical bonding to PU. Scanning electron microscopy (SEM) showed a uniform distribution of MAFC and good interfacing bonding between the MAFC and PU. With the incorporation of 1.5 wt% MAFC into the polyurethane matrix, the tensile and tear strength values of MAFC/PU were 36.4 MPa and 80.1 kN·m−1 respectively, corresponding to improvements of approximately 43.3% and 21.1%, as compared to those of virgin PU as 25.4 MPa and 66.1 kN·m−1, respectively.


Sign in / Sign up

Export Citation Format

Share Document