cerebral asymmetries
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 12)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Camille Michele WILLIAMS ◽  
Hugo Peyre ◽  
Roberto Toro ◽  
Franck Ramus

Studies examining cerebral asymmetries typically divide the L-R Measure (e.g., Left-Right Volume) by the L+R Measure to obtain an Asymmetry Index (AI). However, contrary to widespread belief, such a division fails to render the AI independent from the L+R Measure and/or from total brain size. As a result, variations in brain size may bias correlation estimates with the AI or group differences in AI. We investigated how to analyze brain asymmetries in to distinguish global from regional effects, and report unbiased group differences in cerebral asymmetries. We analyzed the extent to which the L+R Measure, Total Cerebral Measure (TCM, e.g., Total Brain Volume), and L-R TCM predict regional asymmetries. As a case study, we assessed the consequences of omitting each of these predictors on the magnitude and significance of sex differences in asymmetries. We found that the L+R Measure, the TCM, and the L-R TCM predicted the AI of more than 89% of regions and that their relationships were generally linear. Removing any of these predictors changed the significance of sex differences in 33% of regions and the magnitude of sex differences across 13-42% of regions. Although we generally report similar sex and age effects on cerebral asymmetries to those of previous large-scale studies, properly adjusting for regional and global brain size revealed additional sex and age effects on brain asymmetry.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1792
Author(s):  
Silvia Paracchini

Around the world, about 10% people prefer using their left-hand. What leads to this fixed proportion across populations and what determines left versus right preference at an individual level is far from being established. Genetic studies are a tool to answer these questions. Analysis in twins and family show that about 25% of handedness variance is due to genetics. In spite of very large cohorts, only a small fraction of this genetic component can be pinpoint to specific genes. Some of the genetic associations identified so far provide evidence for shared biology contributing to both handedness and cerebral asymmetries. In addition, they demonstrate that handedness is a highly polygenic trait. Typically, handedness is measured as the preferred hand for writing. This is a very convenient measure, especially to reach large sample sizes, but quantitative measures might capture different handedness dimensions and be better suited for genetic analyses. This paper reviews the latest findings from molecular genetic studies as well as the implications of using different ways of assessing handedness.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna K. Bonkhoff ◽  
Markus D. Schirmer ◽  
Martin Bretzner ◽  
Sungmin Hong ◽  
Robert W. Regenhardt ◽  
...  

AbstractAcute ischemic stroke affects men and women differently. In particular, women are often reported to experience higher acute stroke severity than men. We derived a low-dimensional representation of anatomical stroke lesions and designed a Bayesian hierarchical modeling framework tailored to estimate possible sex differences in lesion patterns linked to acute stroke severity (National Institute of Health Stroke Scale). This framework was developed in 555 patients (38% female). Findings were validated in an independent cohort (n = 503, 41% female). Here, we show brain lesions in regions subserving motor and language functions help explain stroke severity in both men and women, however more widespread lesion patterns are relevant in female patients. Higher stroke severity in women, but not men, is associated with left hemisphere lesions in the vicinity of the posterior circulation. Our results suggest there are sex-specific functional cerebral asymmetries that may be important for future investigations of sex-stratified approaches to management of acute ischemic stroke.


2021 ◽  
Author(s):  
Leah T Johnstone ◽  
Emma M Karlsson ◽  
David P Carey

Abstract Many neuroscientific techniques have revealed that more left- than right-handers will have unusual cerebral asymmetries for language. After the original emphasis on frequency in the aphasia and epilepsy literatures, most neuropsychology, and neuroimaging efforts rely on estimates of central tendency to compare these two handedness groups on any given measure of asymmetry. The inevitable reduction in mean lateralization in the left-handed group is often postulated as being due to reversed asymmetry in a small subset of them, but it could also be due to a reduced asymmetry in many of the left-handers. These two possibilities have hugely different theoretical interpretations. Using functional magnetic resonance imaging localizer paradigms, we matched left- and right-handers for hemispheric dominance across four functions (verbal fluency, face perception, body perception, and scene perception). We then compared the degree of dominance between the two handedness groups for each of these four measures, conducting t-tests on the mean laterality indices. The results demonstrate that left-handers with typical cerebral asymmetries are less lateralized for language, faces, and bodies than their right-handed counterparts. These results are difficult to reconcile with current theories of language asymmetry or of handedness.


Author(s):  
Oliver C. Schultheiss ◽  
Olivia S. Schwemmer ◽  
Ksenia Khalaidovski

Abstract Objectives We explored associations between the needs for power, achievement, and affiliation and functional cerebral asymmetries (FCAs), guided by three established hypotheses about the nature of these associations. Methods One-hundred-and-seven participants completed picture-story measures of dispositional motives and activity inhibition (AI), a frequent moderator of motive-behavior associations, tasks measuring FCAs (line bisection, chimeric emotional face judgments, turning bias, perceptual and response asymmetries on the Poffenberger task), self-reported laterality preferences (handedness, footedness, ear and eye preference), and interhemispheric interaction (crossed-uncrossed difference). They also completed an experiment manipulating hand contractions (left, right, both, neither) while they worked on a second picture-story motive measure. Results Dispositional power motivation was associated with stronger rightward asymmetry and less interhemispheric transfer in high-AI and stronger leftward asymmetry and more interhemispheric transfer in low-AI individuals. For the affiliation motive, findings were fewer and in the opposite direction of those for the power motive. These findings emerged for men, but not for women. Left- or right-hand contractions led to increases in power and achievement motivation, but not affiliation motivation. Only left-hand contractions led to decreased AI. Conclusions We discuss these findings in the context of sex-dimorphic organizing and activating effects of steroids on motives and laterality.


Author(s):  
Patrizia Bisiacchi ◽  
Elisa Cainelli

AbstractAsymmetry characterizes the brain in both structure and function. Anatomical asymmetries explain only a fraction of functional variability in lateralization, with structural and functional asymmetries developing at different periods of life and in different ways. In this work, we perform a scoping review of the cerebral asymmetries in the first brain development phases. We included all English-written studies providing direct evidence of hemispheric asymmetries in full-term neonates, foetuses, and premature infants, both at term post-conception and before. The final analysis included 57 studies. The reviewed literature shows large variability in the used techniques and methodological procedures. Most structural studies investigated the temporal lobe, showing a temporal planum more pronounced on the left than on the right (although not all data agree), a morphological asymmetry already present from the 29th week of gestation. Other brain structures have been poorly investigated, and the results are even more discordant. Unlike data on structural asymmetries, functional data agree with each other, identifying a leftward dominance for speech stimuli and an overall dominance of the right hemisphere in all other functional conditions. This generalized dominance of the right hemisphere for all conditions (except linguistic stimuli) is in line with theories stating that the right hemisphere develops earlier and that its development is less subject to external influences because it sustains functions necessary to survive.


2020 ◽  
Vol 287 (1934) ◽  
pp. 20201320
Author(s):  
Muhammad A. Spocter ◽  
Chet C. Sherwood ◽  
Steven J. Schapiro ◽  
William D. Hopkins

Once considered a hallmark of human uniqueness, brain asymmetry has emerged as a feature shared with several other species, including chimpanzees, one of our closest living relatives. Most notable has been the discovery of asymmetries in homologues of cortical language areas in apes, particularly in the planum temporale (PT), considered a central node of the human language network. Several lines of evidence indicate a role for genetic mechanisms in the emergence of PT asymmetry; however, the genetic determinants of cerebral asymmetries have remained elusive. Studies in humans suggest that there is heritability of brain asymmetries of the PT, but this has not been explored to any extent in chimpanzees. Furthermore, the potential influence of non-genetic factors has raised questions about the reproducibility of earlier observations of PT asymmetry reported in chimpanzees. As such, the present study was aimed at examining both the heritability of phenotypic asymmetries in PT morphology, as well as their reproducibility. Using magnetic resonance imaging, we evaluated morphological asymmetries of PT surface area (mm 2 ) and mean depth (mm) in captive chimpanzees ( n = 291) derived from two genetically isolated populations. Our results confirm that chimpanzees exhibit a significant population-level leftward asymmetry for PT surface area, as well as significant heritability in the surface area and mean depth of the PT. These results conclusively demonstrate the existence of a leftward bias in PT asymmetry in chimpanzees and suggest that genetic mechanisms play a key role in the emergence of anatomical asymmetry in this region.


Sign in / Sign up

Export Citation Format

Share Document