wolbachia genome
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Sarah R Bordenstein ◽  
Seth Bordenstein

Wolbachia are the most common obligate, intracellular bacteria in animals. They exist worldwide in arthropod and nematode hosts in which they commonly act as reproductive parasites or mutualists, respectively. Bacteriophage WO, the largest of Wolbachia's mobile elements, includes reproductive parasitism genes, serves as a hotspot for genetic divergence and genomic rearrangement of the bacterial chromosome, and uniquely encodes a Eukaryotic Association Module with eukaryotic-like genes and an ensemble of putative host interaction genes. Despite WO's relevance to genome evolution, selfish genetics, and symbiotic applications, relatively little is known about its origin, host range, diversification, and taxonomic classification. Here we analyze the most comprehensive set of 150 Wolbachia and phage WO assemblies to provide a framework for discretely organizing and naming integrated phage WO genomes. We demonstrate that WO is principally in arthropod Wolbachia with relatives in diverse endosymbionts and metagenomes, organized into four variants related by gene synteny, often oriented opposite the origin of replication in the Wolbachia chromosome, and the large serine recombinase is an ideal typing tool to assign taxonomic classification of the four variants. We identify a novel, putative lytic cassette and WO's association with a conserved eleven gene island, termed Undecim Cluster, that is enriched with virulence-like genes. Finally, we evaluate WO-like Islands in the Wolbachia genome and discuss a new model in which Octomom, a notable WO-like Island, arose from a split with WO. Together, these findings establish the first comprehensive Linnaean taxonomic classification of endosymbiont phages that includes distinguishable genera of phage WO, a family of non-Wolbachia phages from aquatic environments, and an order that captures the collective relatedness of these viruses.


2021 ◽  
Author(s):  
Perran A Ross ◽  
Katie L Robinson ◽  
Qiong Yang ◽  
Ashley G Callahan ◽  
Thomas L Schmidt ◽  
...  

Mosquitoes carrying Wolbachia endosymbionts are being released in many countries for arbovirus control. The wMel strain of Wolbachia blocks Aedes-borne virus transmission and can spread throughout mosquito populations by inducing cytoplasmic incompatibility. Aedes aegypti mosquitoes carrying wMel were first released into the field in Cairns, Australia, over a decade ago, and with wider releases have resulted in the near elimination of local dengue transmission. The long-term stability of Wolbachia effects is critical for ongoing disease suppression, requiring tracking of phenotypic and genomic changes in Wolbachia infections following releases. We used a combination of field surveys, phenotypic assessments, and Wolbachia genome sequencing to show that wMel has remained stable in its effects for up to a decade in Australian Ae. aegypti populations. Phenotypic comparisons of wMel-infected and uninfected mosquitoes from near-field and long-term laboratory populations suggest limited changes in the effects of wMel on mosquito fitness. Treating mosquitoes with antibiotics used to cure the wMel infection had limited effects on fitness in the next generation, supporting the use of tetracycline for generating uninfected mosquitoes without off-target effects. wMel has a temporally stable within-host density and continues to induce complete cytoplasmic incompatibility. A comparison of wMel genomes from pre-release (2010) and nine years post-release (2020) populations show few genomic differences and little divergence between release locations, consistent with the lack of phenotypic changes. These results indicate that releases of Wolbachia-infected mosquitoes for population replacement are likely to be effective for many years, but ongoing monitoring remains important to track potential evolutionary changes.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Kimberley R. Dainty ◽  
Jane Hawkey ◽  
Louise M. Judd ◽  
Etiene C. Pacidônio ◽  
Johanna M. Duyvestyn ◽  
...  

Infection of wMel Wolbachia in Aedes aegypti imparts two signature features that enable its application for biocontrol of dengue. First, the susceptibility of mosquitoes to viruses such as dengue and Zika is reduced. Second, a reproductive manipulation is caused that enables wMel introgression into wild-type mosquito populations. The long-term success of this method relies, in part, on evolution of the wMel genome not compromising the critical features that make it an attractive biocontrol tool. This study compared the wMel Wolbachia genome at the time of initial releases and 1–7 years post-release in Cairns, Australia. Our results show the wMel genome remains highly conserved up to 7 years post-release in gene sequence, content, synteny and structure. This work suggests the wMel genome is stable in its new mosquito host and, therefore, provides reassurance on the potential for wMel to deliver long-term public-health impacts.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 713
Author(s):  
Cheng-Yuan Su ◽  
Dao-Hong Zhu ◽  
Xiao-Hui Yang

Phage WO was first characterized in Wolbachia, an obligate intracellular Rickettsiales known for its ability to regulate the reproduction of arthropod hosts. In this paper, we focus on the study of virus diversity in Andricus hakonensis and the development of highly effective primers. Based on the existing Wolbachia genome sequence, we designed primers (WO-TF and WO-TR) to amplify the full-length orf7 gene of phage WO. Surprisingly, sequencing results showed a high abundance of other phage WO groups in A. hakonensis, in addition to the four groups previously identified. The results also showed that A. hakonensis contained most of the known types of orf7 genes (I, III, IV, V and VI) and the level of diversity of harbored phage WO was very high. Therefore, we speculated that existing primers were not specific enough and that new primers for the detection of phage WO were needed. Based on the existing orf7 gene sequence, we designed specific detection primers (WO-SUF and WO-SUR). Sequencing results showed that the primers effectively amplified all known types of phage WO. In addition to amplifying most of the known sequences, we also detected some new genotypes in A. hakonensis using the new primers. Importantly, all phage WO groups could be efficiently detected. Combined with the results of previous studies, our results suggest that A. hakonensis contains the largest number of phage types (up to 36 types). This study is novel in that it provides practical molecular evidence supporting base deletions, in addition to gene mutations and genetic recombination, as an important cause of phage WO diversity.


iScience ◽  
2020 ◽  
Vol 23 (10) ◽  
pp. 101572
Author(s):  
Bixing Huang ◽  
Qiong Yang ◽  
Ary A. Hoffmann ◽  
Scott A. Ritchie ◽  
Andrew F. van den Hurk ◽  
...  

2020 ◽  
Vol 38 (1) ◽  
pp. 2-15 ◽  
Author(s):  
Julien Martinez ◽  
Lisa Klasson ◽  
John J Welch ◽  
Francis M Jiggins

Abstract Cytoplasmic incompatibility is a selfish reproductive manipulation induced by the endosymbiont Wolbachia in arthropods. In males Wolbachia modifies sperm, leading to embryonic mortality in crosses with Wolbachia-free females. In females, Wolbachia rescues the cross and allows development to proceed normally. This provides a reproductive advantage to infected females, allowing the maternally transmitted symbiont to spread rapidly through host populations. We identified homologs of the genes underlying this phenotype, cifA and cifB, in 52 of 71 new and published Wolbachia genome sequences. They are strongly associated with cytoplasmic incompatibility. There are up to seven copies of the genes in each genome, and phylogenetic analysis shows that Wolbachia frequently acquires new copies due to pervasive horizontal transfer between strains. In many cases, the genes have subsequently acquired loss-of-function mutations to become pseudogenes. As predicted by theory, this tends to occur first in cifB, whose sole function is to modify sperm, and then in cifA, which is required to rescue the cross in females. Although cif genes recombine, recombination is largely restricted to closely related homologs. This is predicted under a model of coevolution between sperm modification and embryonic rescue, where recombination between distantly related pairs of genes would create a self-incompatible strain. Together, these patterns of gene gain, loss, and recombination support evolutionary models of cytoplasmic incompatibility.


2020 ◽  
Vol 12 (2) ◽  
pp. 3818-3831 ◽  
Author(s):  
Xiao-Li Bing ◽  
Dian-Shu Zhao ◽  
Jing-Tao Sun ◽  
Kai-Jun Zhang ◽  
Xiao-Yue Hong

Abstract Wolbachia is a widely distributed intracellular bacterial endosymbiont among invertebrates. The wStriCN, the Wolbachia strain that naturally infects an agricultural pest Laodelphax striatellus, has a “Jekyll and Hyde” mode of infection pattern with positive and negative effects: It not only kills many offspring by inducing cytoplasmic incompatibility (CI) but also significantly increases host fecundity. In this study, we assembled the draft genome of wStriCN and compared it with other Wolbachia genomes to look for clues to its Jekyll and Hyde characteristics. The assembled wStriCN draft genome is 1.79 Mb in size, which is the largest Wolbachia genome in supergroup B. Phylogenomic analysis showed that wStriCN is closest to Wolbachia from Asian citrus psyllid Diaphorina citri. These strains formed a monophylogentic clade within supergroup B. Compared with other Wolbachia genomes, wStriCN contains the most diverse insertion sequence families, the largest amount of prophage sequences, and the most ankyrin domain protein coding genes. The wStriCN genome encodes components of multiple secretion systems, including Types I, II, IV, VI, Sec, and Tac. We detected three pairs of homologs for CI factors CifA and CifB. These proteins harbor the catalytic domains responsible for CI phenotypes but are phylogenetically and structurally distinct from all known Cif proteins. The genome retains pathways for synthesizing biotin and riboflavin, which may explain the beneficial roles of wStriCN in its host planthoppers, which feed on nutrient-poor plant sap. Altogether, the genomic sequencing of wStriCN provides insight into understanding the phylogeny and biology of Wolbachia.


2019 ◽  
Vol 11 (10) ◽  
pp. 3008-3013 ◽  
Author(s):  
Xiaozhu Wang ◽  
Xiao Xiong ◽  
Wenqi Cao ◽  
Chao Zhang ◽  
John H Werren ◽  
...  

Abstract Wolbachia are obligate intracellular bacteria which commonly infect various nematode and arthropod species. Genome sequences have been generated from arthropod samples following enrichment for the intracellular bacteria, and genomes have also been assembled from arthropod whole-genome sequencing projects. However, these methods remain challenging for infections that occur at low titers in hosts. Here we report the first Wolbachia genome assembled from host sequences using 10× Genomics linked-reads technology. The high read depth attainable by this method allows for recovery of intracellular bacteria that are at low concentrations. Based on the depth differences (714× for the insect and 59× for the bacterium), we assembled the genome of a Wolbachia in the parasitoid jewel wasp species Nasonia oneida. The final draft assembly consists of 1,293, 06 bp in 47 scaffolds with 1,114 coding genes and 97.01% genome completeness assessed by checkM. Comparisons of the five Multi Locus Sequence Typing genes revealed that the sequenced Wolbachia genome is the A1 strain (henceforth wOneA1) previously reported in N. oneida. Pyrosequencing confirms that the wasp strain lacks A2 and B types previously detected in this insect, which were likely lost during laboratory culturing. Assembling bacterial genomes from host genome projects can provide an effective method for sequencing bacterial genomes, even when the infections occur at low density in sampled tissues.


2012 ◽  
Vol 22 (12) ◽  
pp. 2467-2477 ◽  
Author(s):  
A. C. Darby ◽  
S. D. Armstrong ◽  
G. S. Bah ◽  
G. Kaur ◽  
M. A. Hughes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document