Study on the process of harmless treatment of residual electrolyte in battery disassembly

2020 ◽  
Vol 38 (11) ◽  
pp. 1295-1300
Author(s):  
Yanbin Zhu ◽  
Qing Ding ◽  
Yuming Zhao ◽  
Jinwen Ai ◽  
Yan Li ◽  
...  

Residual electrolyte is the main pollution source in the lithium ion battery disassembly process. A practical detoxified approach is studied using the lithium hexafluorophosphate in the decommissioned power battery with dimethyl carbonate as a solvent. The pH measurement, Fourier transform infrared spectroscopy, micromorphology and phase structure characterization techniques showed that the process in this study is capable of removing lithium hexafluorophosphate from decommissioned power batteries, while controlling the proper ratio of NaOH can also completely precipitate F− into CaF2 crystal and allows recycling of the organic solvents. This process scheme of residual electrolyte treatment effectively reduces environmental pollution during the decommissioned power batteries recycling process, and has the benefit of resource reuse for valuable elements.

2016 ◽  
Vol 34 (1) ◽  
pp. 10-26 ◽  
Author(s):  
Zhansheng Guo ◽  
Yang Fan ◽  
Shiyu Du

The heat-seal strength of polymer–metal–polymer laminates, widely used in the packaging industry and more recently for pouch lithium-ion batteries, is a critical factor for the integrity of flexible package structures during service. The influences of lithium hexafluorophosphate/ethylene carbonate/dimethyl carbonate (LiPF6/EC/DMC) electrolyte soaking time and storage temperature on heat-seal strength were investigated through T-peel testing using a universal testing machine. Sealed multilayer laminates’ heat-seal strength and their failure modes were measured for specimens sealed at various heat-sealing temperatures and dwell times before and after exposure to room temperature and 60℃ soaking conditions. The soaking condition significantly influences heat-seal strength, especially for the packages heat-sealed at low temperatures and short heat-sealing times. Higher storage temperature during electrolyte-soaking accelerates the heat-seal strength decrease. Failure modes are affected by the soaking conditions and become more complicated than the packages without soaking. The optimized heat-sealing processing window is obtained under a certain soaking condition. The electrolyte hydrogen ion concentration (pH) decreases with longer soaking time and higher storage temperature, indicating that acidification may also contribute to decreased heat-seal strength. The results are important for understanding how stored lithium-ion batteries deteriorate and can help to guide battery design to maximize their shelf life.


2017 ◽  
Vol 19 (36) ◽  
pp. 25140-25150 ◽  
Author(s):  
K. D. Fulfer ◽  
D. G. Kuroda

The structure and dynamics of electrolytes composed of lithium hexafluorophosphate (LiPF6) in dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate were investigated using a combination of linear and two-dimensional infrared spectroscopies.


2014 ◽  
Vol 893 ◽  
pp. 765-768 ◽  
Author(s):  
Yang Gao ◽  
Yu Ke Li ◽  
Wei Zhou

With the rapid development of electric vehicles, power battery market demand rapidly expanding, battery scrap and recycling has become a serious problem. Based on the analysis and forecast of waste battery amount from 2014 to 2024, the paper researched the future theoretical metal recycling amount of power battery in China. Life cycle assessment method is used to establish a waste lithium ion batteries and nickel-metal hydride batteries recycling process of environmental impact assessment model, and the data lists of recycling process are built. The environmental impact load are analyzed and compared. Through the establishment of economic analysis model of waste battery recycling process, the economic performance is quantified. To develop the recycling of waste power battery mode, laws, regulations and relevant technical standards for China[, this paper provide the method reference and data support.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 149
Author(s):  
Alexandra Holzer ◽  
Stefan Windisch-Kern ◽  
Christoph Ponak ◽  
Harald Raupenstrauch

The bottleneck of recycling chains for spent lithium-ion batteries (LIBs) is the recovery of valuable metals from the black matter that remains after dismantling and deactivation in pre‑treatment processes, which has to be treated in a subsequent step with pyrometallurgical and/or hydrometallurgical methods. In the course of this paper, investigations in a heating microscope were conducted to determine the high-temperature behavior of the cathode materials lithium cobalt oxide (LCO—chem., LiCoO2) and lithium iron phosphate (LFP—chem., LiFePO4) from LIB with carbon addition. For the purpose of continuous process development of a novel pyrometallurgical recycling process and adaptation of this to the requirements of the LIB material, two different reactor designs were examined. When treating LCO in an Al2O3 crucible, lithium could be removed at a rate of 76% via the gas stream, which is directly and purely available for further processing. In contrast, a removal rate of lithium of up to 97% was achieved in an MgO crucible. In addition, the basic capability of the concept for the treatment of LFP was investigated whereby a phosphorus removal rate of 64% with a simultaneous lithium removal rate of 68% was observed.


2021 ◽  
Author(s):  
Yifan Song ◽  
Boyi Xie ◽  
Shuya Lei ◽  
Shaole Song ◽  
Wei Sun ◽  
...  

As a widely used power battery, the scrapping boom of LiFePO4 (LFP) battery is coming. Both pyrometallurgical repair and hydrometallurgical processes have been applied in the recycling of spent LFP...


Batteries ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 29
Author(s):  
Leonard Kurz ◽  
Mojtaba Faryadras ◽  
Ines Klugius ◽  
Frederik Reichert ◽  
Andreas Scheibe ◽  
...  

Due to the increasing demand for battery electric vehicles (BEVs), the need for vehicle battery raw materials is increasing. The traction battery (TB) of an electric vehicle, usually a lithium-ion battery (LIB), represents the largest share of a BEV’s CO2 footprint. To reduce this carbon footprint sustainably and to keep the raw materials within a closed loop economy, suitable and efficient recycling processes are essential. In this life cycle assessment (LCA), the ecological performance of a waterjet-based direct recycling process with minimal use of resources and energy is evaluated; only the recycling process is considered, waste treatment and credits for by-products are not part of the analysis. Primary data from a performing recycling company were mainly used for the modelling. The study concludes that the recycling of 1 kg of TB is associated with a global warming potential (GWP) of 158 g CO2 equivalents (CO2e). Mechanical removal using a water jet was identified as the main driver of the recycling process, followed by an air purification system. Compared to conventional hydro- or pyrometallurgical processes, this waterjet-based recycling process could be attributed an 8 to 26 times lower GWP. With 10% and 20% reuse of recyclate in new cells, the GWP of TBs could be reduced by 4% and 8%, respectively. It has been shown that this recycling approach can be classified as environmentally friendly.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 888
Author(s):  
Xuejiao Jin ◽  
Jie Zhang ◽  
Tingting An ◽  
Huihui Zhao ◽  
Wenhao Fu ◽  
...  

Lithium hexafluorophosphate (LiPF6) is one of the leading electrolytes in lithium-ion batteries, and its usage has increased tremendously in the past few years. Little is known, however, about its potential environmental and biological impacts. In order to improve our understanding of the cytotoxicity of LiPF6 and the specific cellular response mechanisms to it, we performed a genome-wide screen using a yeast (Saccharomyces cerevisiae) deletion mutant collection and identified 75 gene deletion mutants that showed LiPF6 sensitivity. Among these, genes associated with mitochondria showed the most enrichment. We also found that LiPF6 is more toxic to yeast than lithium chloride (LiCl) or sodium hexafluorophosphate (NaPF6). Physiological analysis showed that a high concentration of LiPF6 caused mitochondrial damage, reactive oxygen species (ROS) accumulation, and ATP content changes. Compared with the results of previous genome-wide screening for LiCl-sensitive mutants, we found that oxidative phosphorylation-related mutants were specifically hypersensitive to LiPF6. In these deletion mutants, LiPF6 treatment resulted in higher ROS production and reduced ATP levels, suggesting that oxidative phosphorylation-related genes were important for counteracting LiPF6-induced toxicity. Taken together, our results identified genes specifically involved in LiPF6-modulated toxicity, and demonstrated that oxidative stress and ATP imbalance maybe the driving factors in governing LiPF6-induced toxicity.


2017 ◽  
Vol 41 (15) ◽  
pp. 7177-7185 ◽  
Author(s):  
Deying Mu ◽  
Yuanlong Liu ◽  
Ruhong Li ◽  
Quanxin Ma ◽  
Changsong Dai

A highly-selective electrolyte recovery method-transcritical CO2 extraction—was presented which combined the extraction and separation processes together.


Sign in / Sign up

Export Citation Format

Share Document