scholarly journals Deep Learning-Based Framework for the Detection of Cyberattack Using Feature Engineering

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muhammad Shoaib Akhtar ◽  
Tao Feng

Digital systems are changing to security systems in contemporary days. It is time for the digital system to have sufficient security to defend against threats and attacks. The intrusion detection system can identify an anomaly from an external or internal source in the network system. Many kinds of threats are present, that is, active and passive. These dangers could lead to anomalies in the system by which data can be attacked and taken by attackers from the beginning to the destination. Machine learning nowadays is a developing topic; its applications are wide. We can forecast the future through machine learning and classify the right class. In this paper, we employed the new binary and multiclass classification model of Convolutional Neural Networks (CNNs) to identify the anomaly of the network system. In this respect, we used the NSLKDD dataset. Our model uses a Convolutional Neural Network (CNN) to conduct binary and multiclass classification. In both datasets, we build a DL-based DoS detection model. We focus on the DoS category in the most extensively used IDS dataset, KDD. As the name implies, CNN is the most extensively used the DL model for image recognition. Adding a pooling layer to the convolution layer minimizes the size of the feature data extracted from the image while maintaining I/O and spatial information. The CNN model has shown the promising results of multiclass and binary classification in terms of validation loss of 0.0012 at 11th epochs and validation accuracy of 98% and 99%, respectively.

2020 ◽  
pp. 808-817
Author(s):  
Vinh Pham ◽  
◽  
Eunil Seo ◽  
Tai-Myoung Chung

Identifying threats contained within encrypted network traffic poses a great challenge to Intrusion Detection Systems (IDS). Because traditional approaches like deep packet inspection could not operate on encrypted network traffic, machine learning-based IDS is a promising solution. However, machine learning-based IDS requires enormous amounts of statistical data based on network traffic flow as input data and also demands high computing power for processing, but is slow in detecting intrusions. We propose a lightweight IDS that transforms raw network traffic into representation images. We begin by inspecting the characteristics of malicious network traffic of the CSE-CIC-IDS2018 dataset. We then adapt methods for effectively representing those characteristics into image data. A Convolutional Neural Network (CNN) based detection model is used to identify malicious traffic underlying within image data. To demonstrate the feasibility of the proposed lightweight IDS, we conduct three simulations on two datasets that contain encrypted traffic with current network attack scenarios. The experiment results show that our proposed IDS is capable of achieving 95% accuracy with a reasonable detection time while requiring relatively small size training data.


Author(s):  
Iqbal H. Sarker ◽  
Yoosef B. Abushark ◽  
Fawaz Alsolami ◽  
Asif Irshad Khan

Cyber security has recently received enormous attention in today’s security concerns, due to the popularity of the Internet-of-Things (IoT), the tremendous growth of computer networks, and the huge number of relevant applications. Thus, detecting various cyber-attacks or anomalies in a network and building an effective intrusion detection system that performs an essential role in today’s security is becoming more important. Artificial intelligence, particularly machine learning techniques, can be used for building such a data-driven intelligent intrusion detection system. In order to achieve this goal, in this paper, we present an Intrusion Detection Tree (“IntruDTree”) machine-learning-based security model that first takes into account the ranking of security features according to their importance and then build a tree-based generalized intrusion detection model based on the selected important features. This model is not only effective in terms of prediction accuracy for unseen test cases but also minimizes the computational complexity of the model by reducing the feature dimensions. Finally, the effectiveness of our IntruDTree model was examined by conducting experiments on cybersecurity datasets and computing the precision, recall, fscore, accuracy, and ROC values to evaluate. We also compare the outcome results of IntruDTree model with several traditional popular machine learning methods such as the naive Bayes classifier, logistic regression, support vector machines, and k-nearest neighbor, to analyze the effectiveness of the resulting security model.


Author(s):  
Tarek Helmy

The system that monitors the events occurring in a computer system or a network and analyzes the events for sign of intrusions is known as intrusion detection system. The performance of the intrusion detection system can be improved by combing anomaly and misuse analysis. This chapter proposes an ensemble multi-agent-based intrusion detection model. The proposed model combines anomaly, misuse, and host-based detection analysis. The agents in the proposed model use rules to check for intrusions, and adopt machine learning algorithms to recognize unknown actions, to update or create new rules automatically. Each agent in the proposed model encapsulates a specific classification technique, and gives its belief about any packet event in the network. These agents collaborate to determine the decision about any event, have the ability to generalize, and to detect novel attacks. Empirical results indicate that the proposed model is efficient, and outperforms other intrusion detection models.


2022 ◽  
Vol 9 (1) ◽  
pp. 0-0

This article investigates the impact of data-complexity and team-specific characteristics on machine learning competition scores. Data from five real-world binary classification competitions hosted on Kaggle.com were analyzed. The data-complexity characteristics were measured in four aspects including standard measures, sparsity measures, class imbalance measures, and feature-based measures. The results showed that the higher the level of the data-complexity characteristics was, the lower the predictive ability of the machine learning model was as well. Our empirical evidence revealed that the imbalance ratio of the target variable was the most important factor and exhibited a nonlinear relationship with the model’s predictive abilities. The imbalance ratio adversely affected the predictive performance when it reached a certain level. However, mixed results were found for the impact of team-specific characteristics measured by team size, team expertise, and the number of submissions on team performance. For high-performing teams, these factors had no impact on team score.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 219 ◽  
Author(s):  
Sweta Bhattacharya ◽  
Siva Rama Krishnan S ◽  
Praveen Kumar Reddy Maddikunta ◽  
Rajesh Kaluri ◽  
Saurabh Singh ◽  
...  

The enormous popularity of the internet across all spheres of human life has introduced various risks of malicious attacks in the network. The activities performed over the network could be effortlessly proliferated, which has led to the emergence of intrusion detection systems. The patterns of the attacks are also dynamic, which necessitates efficient classification and prediction of cyber attacks. In this paper we propose a hybrid principal component analysis (PCA)-firefly based machine learning model to classify intrusion detection system (IDS) datasets. The dataset used in the study is collected from Kaggle. The model first performs One-Hot encoding for the transformation of the IDS datasets. The hybrid PCA-firefly algorithm is then used for dimensionality reduction. The XGBoost algorithm is implemented on the reduced dataset for classification. A comprehensive evaluation of the model is conducted with the state of the art machine learning approaches to justify the superiority of our proposed approach. The experimental results confirm the fact that the proposed model performs better than the existing machine learning models.


2020 ◽  
Vol 83 (6) ◽  
pp. 602-614
Author(s):  
Hidir Selcuk Nogay ◽  
Hojjat Adeli

<b><i>Introduction:</i></b> The diagnosis of epilepsy takes a certain process, depending entirely on the attending physician. However, the human factor may cause erroneous diagnosis in the analysis of the EEG signal. In the past 2 decades, many advanced signal processing and machine learning methods have been developed for the detection of epileptic seizures. However, many of these methods require large data sets and complex operations. <b><i>Methods:</i></b> In this study, an end-to-end machine learning model is presented for detection of epileptic seizure using the pretrained deep two-dimensional convolutional neural network (CNN) and the concept of transfer learning. The EEG signal is converted directly into visual data with a spectrogram and used directly as input data. <b><i>Results:</i></b> The authors analyzed the results of the training of the proposed pretrained AlexNet CNN model. Both binary and ternary classifications were performed without any extra procedure such as feature extraction. By performing data set creation from short-term spectrogram graphic images, the authors were able to achieve 100% accuracy for binary classification for epileptic seizure detection and 100% for ternary classification. <b><i>Discussion/Conclusion:</i></b> The proposed automatic identification and classification model can help in the early diagnosis of epilepsy, thus providing the opportunity for effective early treatment.


Author(s):  
Pooja Sharma ◽  
Saket J Swarndeep

According the 2010 global burden of disease study, Chronic Kidney Diseases (CKD) was ranked 18th in the list of causes of total no. of deaths worldwide. 10% of the population worldwide is affected by CKD. The prediction of CKD can become a boon for the population to predict the health. Various method and techniques are undergoing the research phase for developing the most accurate CKD prediction system. Using Machine Learning techniques is the most promising one in this area due to its computing function and Machine Learning rules. Existing Systems are working well in predicting the accurate result but still more attributes of data and complicity of health parameter make the root layer for the innovation of new approaches. This study focuses on a novel approach for improving the prediction of CKD. In recent time Neural network system has discovered its use in disease diagnoses, which is depended upon prediction from symptoms data set. Chronic kidney disease detection system using neural network is shown here. This system of neural network accepts disease-symptoms as input and it is trained according to various training algorithms. After neural network is trained using back propagation algorithms, this trained neural network system is used for detection of kidney disease in the human body.


Sign in / Sign up

Export Citation Format

Share Document