scholarly journals WOMBAT v1.0: A fully Bayesian global flux-inversion framework

2021 ◽  
Author(s):  
Andrew Zammit-Mangion ◽  
Michael Bertolacci ◽  
Jenny Fisher ◽  
Ann Stavert ◽  
Matthew L. Rigby ◽  
...  

Abstract. WOMBAT (the WOllongong Methodology for Bayesian Assimilation of Trace-gases) is a fully Bayesian hierarchical statistical framework for flux inversion of trace gases from flask, in situ, and remotely sensed data. WOMBAT extends the conventional Bayesian-synthesis framework through the consideration of a correlated error term, the capacity for online bias correction, and the provision of uncertainty quantification on all unknowns that appear in the Bayesian statistical model. We show, in an observing system simulation experiment (OSSE), that these extensions are crucial when the data are indeed biased and have errors that are spatio-temporally correlated. Using the GEOS-Chem atmospheric transport model, we show that WOMBAT is able to obtain posterior means and variances on non-fossil-fuel CO2 fluxes from Orbiting Carbon Observatory-2 (OCO-2) data that are comparable to those from the Model Intercomparison Project (MIP) reported in Crowell et al. (2019, Atmos. Chem. Phys., vol. 19). We also find that WOMBAT's predictions of out-of-sample retrievals obtained from the Total Column Carbon Observing Network are, for the most part, more accurate than those made by the MIP participants.

2022 ◽  
Vol 15 (1) ◽  
pp. 45-73
Author(s):  
Andrew Zammit-Mangion ◽  
Michael Bertolacci ◽  
Jenny Fisher ◽  
Ann Stavert ◽  
Matthew Rigby ◽  
...  

Abstract. WOMBAT (the WOllongong Methodology for Bayesian Assimilation of Trace-gases) is a fully Bayesian hierarchical statistical framework for flux inversion of trace gases from flask, in situ, and remotely sensed data. WOMBAT extends the conventional Bayesian synthesis framework through the consideration of a correlated error term, the capacity for online bias correction, and the provision of uncertainty quantification on all unknowns that appear in the Bayesian statistical model. We show, in an observing system simulation experiment (OSSE), that these extensions are crucial when the data are indeed biased and have errors that are spatio-temporally correlated. Using the GEOS-Chem atmospheric transport model, we show that WOMBAT is able to obtain posterior means and variances on non-fossil-fuel CO2 fluxes from Orbiting Carbon Observatory-2 (OCO-2) data that are comparable to those from the Model Intercomparison Project (MIP) reported in Crowell et al. (2019). We also find that WOMBAT's predictions of out-of-sample retrievals obtained from the Total Column Carbon Observing Network (TCCON) are, for the most part, more accurate than those made by the MIP participants.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 467
Author(s):  
Rocío Baró ◽  
Christian Maurer ◽  
Jerome Brioude ◽  
Delia Arnold ◽  
Marcus Hirtl

This paper demonstrates the environmental impacts of the wildfires occurring at the beginning of April 2020 in and around the highly contaminated Chernobyl Exclusion Zone (CEZ). Due to the critical fire location, concerns arose about secondary radioactive contamination potentially spreading over Europe. The impact of the fire was assessed through the evaluation of fire plume dispersion and re-suspension of the radionuclide Cs-137, whereas, to assess the smoke plume effect, a WRF-Chem simulation was performed and compared to Tropospheric Monitoring Instrument (TROPOMI) satellite columns. The results show agreement of the simulated black carbon and carbon monoxide plumes with the plumes as observed by TROPOMI, where pollutants were also transported to Belarus. From an air quality and health perspective, the wildfires caused extremely bad air quality over Kiev, where the WRF-Chem model simulated mean values of PM2.5 up to 300 µg/m3 (during the first fire outbreak) over CEZ. The re-suspension of Cs-137 was assessed by a Bayesian inverse modelling approach using FLEXPART as the atmospheric transport model and Ukraine observations, yielding a total release of 600 ± 200 GBq. The increase in both smoke and Cs-137 emissions was only well correlated on the 9 April, likely related to a shift of the focus area of the fires. From a radiological point of view even the highest Cs-137 values (average measured or modelled air concentrations and modelled deposition) at the measurement site closest to the Chernobyl Nuclear Power Plant, i.e., Kiev, posed no health risk.


2021 ◽  
Author(s):  
Stefan Hagemann ◽  
Ute Daewel ◽  
Volker Matthias ◽  
Tobias Stacke

<p>River discharge and the associated nutrient loads are important factors that influence the functioning of the marine ecosystem. Lateral inflows from land carrying fresh, nutrient-rich water determine coastal physical conditions and nutrient concentration and, hence, dominantly influence primary production in the system. Since this forms the basis of the trophic food web, riverine nutrient concentrations impact the variability of the whole coastal ecosystem. This process becomes even more relevant in systems like the Baltic Sea, which is almost decoupled from the open ocean and land-borne nutrients play a major role for ecosystem productivity on seasonal up to decadal time scales.</p><p> </p><p>In order to represent the effects of climate or land use change on nutrient availability, a coupled system approach is required to simulate the transport of nutrients across Earth system compartments. This comprises their transport within the atmosphere, the deposition and human application at the surface, the lateral transport over the land surface into the ocean and their dynamics and transformation in the marine ecosystem. In our study, we combine these processes in a modelling chain within the GCOAST (Geesthacht Coupled cOAstal model SysTem) framework for the northern European region. This modelling chain comprises:</p><p> </p><ul><li>Simulation of emissions, atmospheric transport and deposition with the chemistry transport model CMAQ at 36 km grid resolution using atmospheric forcing from the coastDat3 data that have been generated with the regional climate model COSMO-CLM over Europe at 0.11° resolution using ERA-Interim re-analyses as boundary conditions</li> <li>Simulation of inert processes at the land surface with the global hydrology model HydroPy (former MPI-HM), i.e. considering total nitrogen without any chemical reactions</li> <li>Riverine transport with the Hydrological Discharge (HD) model at 0.0833° spatial resolution</li> <li>Simulation of the North Sea and Baltic Sea ecosystems with 3D coupled physical-biogeochemical NPZD-model ECOSMO II at about 10 km resolution</li> </ul><p> </p><p>We will present first results and their validation from this exercise.</p><p> </p>


2018 ◽  
Vol 18 (18) ◽  
pp. 13305-13320 ◽  
Author(s):  
Tim Arnold ◽  
Alistair J. Manning ◽  
Jooil Kim ◽  
Shanlan Li ◽  
Helen Webster ◽  
...  

Abstract. Decadal trends in the atmospheric abundances of carbon tetrafluoride (CF4) and nitrogen trifluoride (NF3) have been well characterised and have provided a time series of global total emissions. Information on locations of emissions contributing to the global total, however, is currently poor. We use a unique set of measurements between 2008 and 2015 from the Gosan station, Jeju Island, South Korea (part of the Advanced Global Atmospheric Gases Experiment network), together with an atmospheric transport model, to make spatially disaggregated emission estimates of these gases in East Asia. Due to the poor availability of good prior information for this study, our emission estimates are largely influenced by the atmospheric measurements. Notably, we are able to highlight emission hotspots of NF3 and CF4 in South Korea due to the measurement location. We calculate emissions of CF4 to be quite constant between the years 2008 and 2015 for both China and South Korea, with 2015 emissions calculated at 4.3±2.7 and 0.36±0.11 Gg yr−1, respectively. Emission estimates of NF3 from South Korea could be made with relatively small uncertainty at 0.6±0.07 Gg yr−1 in 2015, which equates to ∼1.6 % of the country's CO2 emissions. We also apply our method to calculate emissions of CHF3 (HFC-23) between 2008 and 2012, for which our results find good agreement with other studies and which helps support our choice in methodology for CF4 and NF3.


2013 ◽  
Vol 6 (4) ◽  
pp. 917-925 ◽  
Author(s):  
V. Duflot ◽  
D. Hurtmans ◽  
L. Clarisse ◽  
Y. R'honi ◽  
C. Vigouroux ◽  
...  

Abstract. Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing, we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S, 55° E) and Jungfraujoch (46° N, 8° E) in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI). A first order comparison with local ground-based Fourier transform infraRed (FTIR) measurements has been carried out allowing tests of seasonal consistency which is reasonably captured, except for HCN at Jungfraujoch. The IASI data shows a greater tendency to high C2H2 values. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values.


2016 ◽  
Author(s):  
Weihua Chen ◽  
Xuemei Wang ◽  
Jason Blake Cohen ◽  
Shengzhen Zhou ◽  
Zhisheng Zhang ◽  
...  

Abstract. Measurements of size-resolved aerosols from 0.25 to 18 μm were conducted at three sites (urban, suburban and background sites) and used in tandem with an atmospheric transport model to study the size distribution and formation of atmospheric aerosols in southern China during the monsoon season (May–June) in 2010. The mass distribution showed the majority of chemical components were found in the smaller size bins (< 2.5 μm). Sulfate, was found to be strongly correlated with aerosol water, and anti-correlated with atmospheric SO2, hinting at aqueous-phase reactions being the main formation pathway. Nitrate was the only major species that showed a bi-modal distribution at the urban site, and was dominated by the coarse mode in the other two sites, suggesting that an important component of nitrate formation is chloride depletion of sea salt transported from the South China Sea. In addition to these aqueous-phase reactions and interactions with sea salt aerosols, new particle formation, chemical aging, and long-range transport from upwind urban or biomass burning regions were also found to be important in at least some of the sights on some of the days. This work therefore summarizes the different mechanisms that significantly impact the aerosol chemical composition during the Monsoon over southern China.


2017 ◽  
Author(s):  
Claudia Grossi ◽  
Felix R. Vogel ◽  
Roger Curcoll ◽  
Alba Àgueda ◽  
Arturo Vargas ◽  
...  

Abstract. Atmospheric concentrations of the two main greenhouse gases (GHGs), carbon dioxide (CO2) and methane (CH4), are continuously measured since November 2012 at the Spanish rural station of Gredos (GIC3), within the climate network ClimaDat, together with atmospheric radon (222Rn) tracer and meteorological parameters. The atmospheric variability of CH4 concentrations measured from 2013 to 2015 at GIC3 has been analyzed in this study. It is interpreted in relation to the variability of measured 222Rn concentrations, modelled 222Rn fluxes and modelled heights of the planetary boundary layer (PBLH) in the same period. In addition, nocturnal fluxes of CH4 were estimated using two methods: the Radon Tracer Method (RTM) and one based on the EDGARv4.2 bottom-up emission inventory. Both previous methods have been applied using the same footprints, calculated with the atmospheric transport model FLEXPARTv6.2. Results show that daily and seasonal changes in atmospheric concentrations of 222Rn (and the corresponding fluxes) can help to understand the atmospheric CH4 variability. On daily basis, the variation in the PBLH mainly drives changes in 222Rn and CH4 concentrations while, on monthly basis, their atmospheric variability seems to depend on changes in their emissions. The median value of RTM based methane fluxes (FR_CH4) is 0.17 mg CH4 m−2 h−1 with an absolute deviation of 0.08 mg CH4 m−2 h−1. Median methane fluxes based on bottom-up inventory (FE_CH4) is of 0.32 mg CH4 m−2 h−1 with an absolute deviation of 0.06 mg CH4 m−2 h−1. Monthly FR_CH4 flux shows a seasonality which is not observed in the monthly FE_CH4 flux. During January–May FR_CH4 fluxes present a median value of 0.08 mg CH4 m−2 h−1 with an absolute deviation of 0.05 mg CH4 m−2 h−1 and a median value of 0.19 mg CH4 m−2 h−1 with an absolute deviation of 0.06 mg CH4 m−2 h−1 during June–December. This seasonal doubling of the median methane fluxes calculated by RTM at the GIC3 area seems to be mainly related to the alternate presence of transhumant livestock in the GIC3 area. The results obtained in this study highlight the benefit of applying independent RTM to improve the seasonality of the emission factors from bottom-up inventories.


2016 ◽  
Author(s):  
Dominik Schmithüsen ◽  
Scott Chambers ◽  
Bernd Fischer ◽  
Stefan Gilge ◽  
Juha Hatakka ◽  
...  

Abstract. A European-wide 222Radon/222Radon progeny comparison study has been conducted in order to determine correction factors that could be applied to existing atmospheric 222Radon data sets for quantitative use of this tracer in atmospheric transport model validation. Two compact and easy-to-transport Heidelberg Radon Monitors (HRM) were moved around to run for at least one month at each of the nine European measurement stations that were included in the comparison. Linear regressions between parallel data sets were calculated, yielding correction factors relative to the HRM ranging from 0.68 to 1.45. A calibration bias between ANSTO (Australian Nuclear Science and Technology Organisation) two-filter radon monitors and the HRM of ANSTO/HRM = 1.11 ± 0.05 was found. For continental stations, which use one-filter systems, preliminary 214Po/222Rn disequilibrium values were estimated to lie between 0.8 at mountain stations (e.g. Schauinsland) and 0.9 at non-mountain sites for sampling heights around 20 to 30 m above ground level. Respective corrections need to be applied to obtain a consistent European 222Radon data set for further applications.


Author(s):  
Ning Zeng

&lt;p&gt;&lt;span&gt;The world-wide lockdown in response to the COVID-19 pandemic in year 2020 led to economic slowdown and large reduction of fossil fuel CO2 emissions 1,2, but it is unclear how much it would reduce atmospheric CO2 concentration, the main driver of climate change, and whether it can be observed. We estimated that a 7.9% reduction in emissions for 4 months would result in a 0.25 ppm decrease in the Northern Hemisphere CO2, an increment that is within the capability of current CO2 analyzers, but is a few times smaller than natural CO2 variabilities caused by weather and the biosphere such as El Nino. We used a state-of-the-art atmospheric transport model to simulate CO2, driven by a new daily fossil fuel emissions dataset and hourly biospheric fluxes from a carbon cycle model forced with observed climate variability. Our results show a 0.13 ppm decrease in atmospheric column CO2 anomaly averaged over 50S-50N for the period February-April 2020 relative to a 10-year climatology. A similar decrease was observed by the carbon satellite GOSAT3. Using model sensitivity experiments, we further found that COVID, the biosphere and weather contributed 54%, 23%, and 23% respectively. In May 2020, the CO2 anomaly continued to decrease and was 0.36 ppm below climatology, mostly due to the COVID reduction and a biosphere that turned from a relative carbon source to carbon sink, while weather impact fluctuated. This seemingly small change stands out as the largest sub-annual anomaly in the last 10 years. Measurements from global ground stations were analyzed. At city scale, on-road CO2 enhancement measured in Beijing shows reduction of 20-30 ppm, consistent with drastically reduced traffic during the lockdown, while station data suggest that the expected COVID signal of 5-10 ppm was swamped by weather-driven variability on multi-day time scales. The ability of our current carbon monitoring systems in detecting the small and short-lasting COVID signal on the background of fossil fuel CO2 accumulated over the last two centuries is encouraging. The COVID-19 pandemic is an unintended experiment whose impact suggests that to keep atmospheric CO2 at a climate-safe level will require sustained effort of similar magnitude and improved accuracy and expanded spatiotemporal coverage of our monitoring systems.&lt;/span&gt;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document