scholarly journals The Role of ARID1A in Tumors: Tumor Initiation or Tumor Suppression?

2021 ◽  
Vol 11 ◽  
Author(s):  
Shouying Xu ◽  
Chao Tang

Genes encoding subunits of SWItch/Sucrose Non-Fermenting (SWI/SNF) chromatin remodeling complexes are collectively mutated in 20% of all human cancers, among which the AT-rich interacting domain−containing protein 1A (ARID1A, also known as BAF250a, B120, C1orf4, Osa1) that encodes protein ARID1A is the most frequently mutated, and mutations in ARID1A have been found in various types of cancer. ARID1A is thought to play a significant role both in tumor initiation and in tumor suppression, which is highly dependent upon context. Recent molecular mechanistic research has revealed that ARID1A participates in tumor progression through its effects on control of cell cycle, modulation of cellular functions such as EMT, and regulation of various signaling pathways. In this review, we synthesize a mechanistic understanding of the role of ARID1A in human tumor initiation as well as in tumor suppression and further discuss the implications of these new discoveries for potential cancer intervention. We also highlight the mechanisms by which mutations affecting the subunits in SWI/SNF complexes promote cancer.

2011 ◽  
Vol 22 (17) ◽  
pp. 3263-3275 ◽  
Author(s):  
T. T. Giang Ho ◽  
Audrey Stultiens ◽  
Johanne Dubail ◽  
Charles M. Lapière ◽  
Betty V. Nusgens ◽  
...  

RhoGTPases are key signaling molecules regulating main cellular functions such as migration, proliferation, survival, and gene expression through interactions with various effectors. Within the RhoA-related subclass, RhoA and RhoC contribute to several steps of tumor growth, and the regulation of their expression affects cancer progression. Our aim is to investigate their respective contributions to the acquisition of an invasive phenotype by using models of reduced or forced expression. The silencing of RhoC, but not of RhoA, increased the expression of genes encoding tumor suppressors, such as nonsteroidal anti-inflammatory drug–activated gene 1 (NAG-1), and decreased migration and the anchorage-independent growth in vitro. In vivo, RhoC small interfering RNA (siRhoC) impaired tumor growth. Of interest, the simultaneous knockdown of RhoC and NAG-1 repressed most of the siRhoC-related effects, demonstrating the central role of NAG-1. In addition of being induced by RhoC silencing, NAG-1 was also largely up-regulated in cells overexpressing RhoA. The silencing of RhoGDP dissociation inhibitor α (RhoGDIα) and the overexpression of a RhoA mutant unable to bind RhoGDIα suggested that the effect of RhoC silencing is indirect and results from the up-regulation of the RhoA level through competition for RhoGDIα. This study demonstrates the dynamic balance inside the RhoGTPase network and illustrates its biological relevance in cancer progression.


2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


2019 ◽  
Vol 24 (39) ◽  
pp. 4659-4667 ◽  
Author(s):  
Mona Fani ◽  
Milad Zandi ◽  
Majid Rezayi ◽  
Nastaran Khodadad ◽  
Hadis Langari ◽  
...  

MicroRNAs (miRNAs) are non-coding RNAs with 19 to 24 nucleotides which are evolutionally conserved. MicroRNAs play a regulatory role in many cellular functions such as immune mechanisms, apoptosis, and tumorigenesis. The main function of miRNAs is the post-transcriptional regulation of gene expression via mRNA degradation or inhibition of translation. In fact, many of them act as an oncogene or tumor suppressor. These molecular structures participate in many physiological and pathological processes of the cell. The virus can also produce them for developing its pathogenic processes. It was initially thought that viruses without nuclear replication cycle such as Poxviridae and RNA viruses can not code miRNA, but recently, it has been proven that RNA viruses can also produce miRNA. The aim of this articles is to describe viral miRNAs biogenesis and their effects on cellular and viral genes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanxia Zhan ◽  
Junxian Du ◽  
Zhihui Min ◽  
Li Ma ◽  
Wei Zhang ◽  
...  

AbstractHypoxia is a common phenomenon in solid tumors. The roles of exosomes from hypoxic breast cancer stroma are less studied. So, the study was aimed to investigate the role of exosomes from hypoxic cancer-associated fibroblasts (CAFs) cells in breast cancer. The circRNA array analysis was performed to screen differential expressed circRNAs between hypoxic and normoxic CAFs exosomes. Candidate circHIF1A (circ_0032138) was screened out and it was confirmed that circHIF1A was up-regulated in the exosomes from hypoxic CAFs and their exosomes. Through investigating cellular functions including cell proliferation and stem cell features, it was demonstrated that hypoxic CAFs exosomes transferred circHIF1A into breast cancer cells, which played an important role in cancer stem cell properties sponging miR-580-5p by regulating CD44 expression. In a summary, circHIF1A from hypoxic CAFs exosomes played an important role in stem cell properties of breast cancer. CircHIF1A may act as a target molecule of breast cancer therapy.


Author(s):  
Tania Ho-Plágaro ◽  
Raúl Huertas ◽  
María I Tamayo-Navarrete ◽  
Elison Blancaflor ◽  
Nuria Gavara ◽  
...  

Abstract The formation of arbuscular mycorrhizal (AM) symbiosis requires plant root host cells to undergo major structural and functional reprogramming in order to house the highly branched AM fungal structure for the reciprocal exchange of nutrients. These morphological modifications are associated with cytoskeleton remodelling. However, molecular bases and the role of microtubules (MTs) and actin filament dynamics during AM formation are largely unknown. In this study, the tomato tsb gene, belonging to a Solanaceae group of genes encoding MT-associated proteins for pollen development, was found to be highly expressed in root cells containing arbuscules. At earlier stages of mycorrhizal development, tsb overexpression enhanced the formation of highly developed and transcriptionally active arbuscules, while tsb silencing hampers the formation of mature arbuscules and represses arbuscule functionality. However, at later stages of mycorrhizal colonization, tsb OE roots accumulate fully developed transcriptionally inactive arbuscules, suggesting that the collapse and turnover of arbuscules might be impaired by TSB accumulation. Imaging analysis of the MT cytoskeleton in cortex root cells overexpressing tsb revealed that TSB is involved in MT-bundling. Taken together, our results provide unprecedented insights into the role of novel MT-associated protein in MT rearrangements throughout the different stages of the arbuscule life cycle.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takuma Nakatsuka ◽  
Keisuke Tateishi ◽  
Hiroyuki Kato ◽  
Hiroaki Fujiwara ◽  
Keisuke Yamamoto ◽  
...  

AbstractWhile the significance of acquired genetic abnormalities in the initiation of hepatocellular carcinoma (HCC) has been established, the role of epigenetic modification remains unknown. Here we identified the pivotal role of histone methyltransferase G9a in the DNA damage-triggered initiation of HCC. Using liver-specific G9a-deficient (G9aΔHep) mice, we revealed that loss of G9a significantly attenuated liver tumor initiation caused by diethylnitrosamine (DEN). In addition, pharmacological inhibition of G9a attenuated the DEN-induced initiation of HCC. After treatment with DEN, while the induction of γH2AX and p53 were comparable in the G9aΔHep and wild-type livers, more apoptotic hepatocytes were detected in the G9aΔHep liver. Transcriptome analysis identified Bcl-G, a pro-apoptotic Bcl-2 family member, to be markedly upregulated in the G9aΔHep liver. In human cultured hepatoma cells, a G9a inhibitor, UNC0638, upregulated BCL-G expression and enhanced the apoptotic response after treatment with hydrogen peroxide or irradiation, suggesting an essential role of the G9a-Bcl-G axis in DNA damage response in hepatocytes. The proposed mechanism was that DNA damage stimuli recruited G9a to the p53-responsive element of the Bcl-G gene, resulting in the impaired enrichment of p53 to the region and the attenuation of Bcl-G expression. G9a deletion allowed the recruitment of p53 and upregulated Bcl-G expression. These results demonstrate that G9a allows DNA-damaged hepatocytes to escape p53-induced apoptosis by silencing Bcl-G, which may contribute to the tumor initiation. Therefore, G9a inhibition can be a novel preventive strategy for HCC.


2021 ◽  
Vol 22 (8) ◽  
pp. 3804
Author(s):  
Luisa Siculella ◽  
Laura Giannotti ◽  
Benedetta Di Chiara Stanca ◽  
Matteo Calcagnile ◽  
Alessio Rochira ◽  
...  

Reactive intermediate deaminase (Rid) proteins are enzymes conserved in all domains of life. UK114, a mammalian member of RidA subfamily, has been firstly identified as a component of liver perchloric acid-soluble proteins (L-PSP). Although still poorly defined, several functions have been attributed to the mammalian protein UK114/RIDA, including the reactive intermediate deamination activity. The expression of UK114/RIDA has been observed in some tumors, arousing interest in this protein as an evaluable tumor marker. However, other studies reported a negative correlation between UK114/RIDA expression, tumor differentiation degree and cell proliferation. This work addressed the question of UK114/RIDA expression in human non-tumor HEK293 cell lines and in some human tumor cell lines. Here we reported that human RIDA (hRIDA) was expressed in all the analyzed cell line and subjected to lysine (K-)succinylation. In HEK293, hRIDA K-succinylation was negatively correlated to the cell proliferation rate and was under the control of SIRT5. Moreover, K-succinylation clearly altered hRIDA quantification by immunoblotting, explaining, at least in part, some discrepancies about RIDA expression reported in previous studies. We found that hRIDA was able to deaminate reactive enamine-imine intermediates and that K-succinylation drastically reduced deaminase activity. As predicted by in silico analysis, the observed reduction of deaminase activity has been related to the drastic alterations of hRIDA structure inferred by K-succinylation. The role of hRIDA and the importance of its K-succinylation in cell metabolism, especially in cancer biology, have been discussed.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 489-503 ◽  
Author(s):  
Karen E Ross ◽  
Orna Cohen-Fix

Abstract Cdh1p, a substrate specificity factor for the cell cycle-regulated ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), promotes exit from mitosis by directing the degradation of a number of proteins, including the mitotic cyclins. Here we present evidence that Cdh1p activity at the M/G1 transition is important not only for mitotic exit but also for high-fidelity chromosome segregation in the subsequent cell cycle. CDH1 showed genetic interactions with MAD2 and PDS1, genes encoding components of the mitotic spindle assembly checkpoint that acts at metaphase to prevent premature chromosome segregation. Unlike cdh1Δ and mad2Δ single mutants, the mad2Δ cdh1Δ double mutant grew slowly and exhibited high rates of chromosome and plasmid loss. Simultaneous deletion of PDS1 and CDH1 caused extensive chromosome missegregation and cell death. Our data suggest that at least part of the chromosome loss can be attributed to kinetochore/spindle problems. Our data further suggest that Cdh1p and Sic1p, a Cdc28p/Clb inhibitor, have overlapping as well as nonoverlapping roles in ensuring proper chromosome segregation. The severe growth defects of both mad2Δ cdh1Δ and pds1Δ cdh1Δ strains were rescued by overexpressing Swe1p, a G2/M inhibitor of the cyclin-dependent kinase, Cdc28p/Clb. We propose that the failure to degrade cyclins at the end of mitosis leaves cdh1Δ mutant strains with abnormal Cdc28p/Clb activity that interferes with proper chromosome segregation.


2000 ◽  
Vol 13 (1) ◽  
pp. 122-143 ◽  
Author(s):  
Mahmoud A. Ghannoum

SUMMARY Microbial pathogens use a number of genetic strategies to invade the host and cause infection. These common themes are found throughout microbial systems. Secretion of enzymes, such as phospholipase, has been proposed as one of these themes that are used by bacteria, parasites, and pathogenic fungi. The role of extracellular phospholipase as a potential virulence factor in pathogenic fungi, including Candida albicans, Cryptococcus neoformans, and Aspergillus, has gained credence recently. In this review, data implicating phospholipase as a virulence factor in C. albicans, Candida glabrata, C. neoformans, and A. fumigatus are presented. A detailed description of the molecular and biochemical approaches used to more definitively delineate the role of phospholipase in the virulence of C. albicans is also covered. These approaches resulted in cloning of three genes encoding candidal phospholipases (caPLP1, caPLB2, and PLD). By using targeted gene disruption, C. albicans null mutants that failed to secrete phospholipase B, encoded by caPLB1, were constructed. When these isogenic strain pairs were tested in two clinically relevant murine models of candidiasis, deletion of caPLB1 was shown to lead to attenuation of candidal virulence. Importantly, immunogold electron microscopy studies showed that C. albicans secretes this enzyme during the infectious process. These data indicate that phospholipase B is essential for candidal virulence. Although the mechanism(s) through which phospholipase modulates fungal virulence is still under investigations, early data suggest that direct host cell damage and lysis are the main mechanisms contributing to fungal virulence. Since the importance of phospholipases in fungal virulence is already known, the next challenge will be to utilize these lytic enzymes as therapeutic and diagnostic targets.


Sign in / Sign up

Export Citation Format

Share Document