drought hardening
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanling Zheng ◽  
Zhining Xia ◽  
Jianrong Wu ◽  
Huancheng Ma

Abstract Background Trees of Bombax ceiba L. could produce a large number of viable seeds in the dry-hot valleys. However, the seedling regeneration of the species is difficult in these areas as mild drought often occur repeatedly which might be followed by heat stress. However, how the repeated drought affects the subsequent drought and heat tolerance of B. ceiba is not clear. In this study, chlorophyll fluorescence, soluble sugar content and lipid metabolism were measured for the drought-treated seedlings and heat-treated seedlings with or without drought hardening. Results Neither the first nor third dehydration treatments affected the photosynthetic activity and soluble sugar content of B. ceiba seedlings. However, they differentially affected the fluidity of the local membranes and the levels of diacylglycerol and phosphatidic acid. Heat shock severely decreased the photosynthetic efficiency but drought priming reduced the effects of heat shock. Moreover, heat shock with or without drought priming had differential effects on the metabolism of soluble sugars and some lipids. In addition, the unsaturation level of membrane glycerolipids increased following heat shock for non-drought-hardened seedlings which, however, maintained for drought-hardened seedlings. Conclusions The results suggest that two cycles of dehydration/recovery can affect the metabolism of some lipids during the third drought stress and may enhance the heat tolerance of B. ceiba by adjusting lipid composition and membrane fluidity.


2021 ◽  
Author(s):  
Caixia Li ◽  
Mounkaila Hamani ◽  
Jingsheng Sun ◽  
Wang Guangshuai ◽  
Ning Huifeng ◽  
...  

Abstract This study aimed to investigate the stress tolerance of maize by exploring the changes in abscisic acid (ABA) concentration, biomass accumulation, and transpiration rate of maize exposed to drought and waterlogging stress; The experiment was conducted in a controlled greenhouse by setting up a total of 17 treatments of water stress, waterlogging stress, and drought stress followed by waterlogging. A completely randomized block design was employed; Waterlogging limited the formation of maize biomass more than that by water stress. Waterlogging alone (W) inhibited more strongly the growth of the aboveground part than of the underground part, causing a de-crease in the canopy-to-root ratio. However, the canopy-to-root ratio increased under waterlogging after drought. Under drought and waterlogging stress, the ABA concentrations of maize leaves and roots changed gradually, decreasing from the leaves to the root base, then middle root, and finally root tip. Early water stress had a greater effect on leaf ABA concentration than on root ABA concentration, and leaves were the most sensitive to drought stress. Root system was more sensitive to drought stress followed by waterlogging; Moderate controlled drought at the seedling stage can improve their resistance to subsequent waterlogging stress, but the subsequent water-logging stress should not last more than 7 days.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1115
Author(s):  
Hisanori Harayama ◽  
Hiroyuki Tobita ◽  
Mitsutoshi Kitao ◽  
Hirokazu Kon ◽  
Wataru Ishizuka ◽  
...  

A previous study revealed low survival rates for Japanese larch (Larix kaempferi) summer-planted seedlings grown in Hiko-V-120 containers. This study examines nursery practices that could potentially prevent deterioration of the seedling water balance after planting to improve the survival rate of this species, which has a low drought tolerance. During summer planting, we tested (1) drought hardening or high-potassium fertilization for two months before planting, (2) antitranspirant or topping treatment at planting, and (3) the use of the JFA-150 container with a larger capacity and lower growing density than the Hiko-V-120 container. Drought hardening increased seedling drought tolerance because of the low leaf:root ratio, due to lower leaf mass production, resulting in increased survival from 74% to 93% in Hiko-V-120 containers. When JFA-150 containers were used, the leaf:root ratio was lower because of higher root mass, resulting in an increase in survival to 87%, with the highest survival of 97% when combined with drought hardening. The application of antitranspirant increased survival to over 90%, whereas topping did not, probably because of severer competition from weeds. High-potassium fertilization did not affect seedling traits or survival. For better survival of summer-planted container-grown Japanese larch seedlings, it is recommended that they be grown in containers providing sufficient cell volume and density for root growth while the seedlings are in the nursery and that irrigation be withheld for two months before planting. In addition, to obtain higher survival, an antitranspirant can be applied at planting at a cost.


Phyton ◽  
2021 ◽  
Vol 90 (1) ◽  
pp. 245-257
Author(s):  
Ruitao Lou ◽  
Daoxi Li ◽  
Yanbin Li ◽  
Zepeng Bian ◽  
Yanan Zhu

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Rayyan Khan ◽  
Xinghua Ma ◽  
Shahen Shah ◽  
Xiaoying Wu ◽  
Aaqib Shaheen ◽  
...  

Abstract Background Drought stress is the most harmful one among other abiotic stresses with negative impacts on crop growth and development. Drought-hardening is a feasible and widely used method in tobacco seedlings cultivation. It has gained extensive interests due to its role in improving drought tolerance. This research aimed to investigate the role of drought-hardening and to unravel the multiple mechanisms underlying tobacco drought tolerance and adaptation. Results This study was designed in which various drought-hardening treatments (CK (no drought-hardening), T1 (drought-hardening for 24 h), T2 (drought-hardening for 48 h), and T3 (drought-hardening for 72 h)) were applied to two tobacco varieties namely HongHuaDaJinYuan (H) and Yun Yan-100 (Y). The findings presented a complete framework of drought-hardening effect at physiological, biochemical, and gene expression levels of the two tobacco varieties under drought stress. The results showed that T2 and T3 significantly reduced the growth of the two varieties under drought stress. Similarly, among the various drought-hardening treatments, T3 improved both the enzymatic (POD, CAT, APX) and non-enzymatic (AsA) defense systems along with the elevated levels of proline and soluble sugar to mitigate the negative effects of oxidative damage and bringing osmoregulation in tobacco plants. Finally, the various drought-hardening treatments (T1, T2, and T3) showed differential regulation of genes expressed in the two varieties, while, particularly T3 drought-hardening treatment-induced drought tolerance via the expression of various stress-responsive genes by triggering the biosynthesis pathways of proline (P5CS1), polyamines (ADC2), ABA-dependent (SnRK2, AREB1), and independent pathways (DREB2B), and antioxidant defense-related genes (CAT, APX1, GR2) in response to drought stress. Conclusions Drought-hardening made significant contributions to drought tolerance and adaptation in two tobacco variety seedlings by reducing its growth and, on the other hand, by activating various defense mechanisms at biochemical and molecular levels. The findings of the study pointed out that drought-hardening is a fruitful strategy for conferring drought tolerance and adaptations in tobacco. It will be served as a useful method in the future to understand the drought tolerance and adaptation mechanisms of other plant species. Graphical abstract Drought-hardening improved drought tolerance and adaptation of the two tobacco varieties. T1 indicates drought-hardening for 24 h, T2 indicates drought-hardening for 48 h, T3 indicates drought-hardening for 72 h


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 441
Author(s):  
Shin-Taro Saiki ◽  
Yuho Ando ◽  
Kenichi Yazaki ◽  
Hiroyuki Tobita

Climate models in Japan predict that the annual mean air temperature and number of consecutive dry days will increase in the future, leading to high seedling mortality rates. Maintaining high survival rates of Cryptomeria japonica seedlings, a commercially important tree species, is therefore, important in terms of appropriate forest management under climate change. Although drought hardening, in which seedlings are acclimated to dry conditions in the nursery prior to planting, contributes to increased survival under drought conditions, little is known about the effective irrigation frequency of drought hardening in C. japonica seedlings. In this study, we therefore, examine the effectiveness of different drought-hardening treatments in C. japonica. We first clarify the effects on physiological and morphological traits by comparing three drought-hardening treatments [control (C): Irrigation once daily; mild (M): irrigation once every three days; and severe (S): irrigation once every five days] for one month. Next, to confirm the effects during consecutive dry treatment, we stopped irrigation for 13 days and once again compared the physiological traits between the three drought-hardening treatments. Drought hardening reduced whole-plant transpiration (Ewhole), resulting in conserved water use, and this tendency was particularly evident under the S treatment. Moreover, during consecutive dry treatment, the Ewhole, proportions of non-embolized xylem, and cambium status of basal stem regions were maintained for the longest duration under the S treatment, followed by the M treatment. Our findings suggest that the efficiency of drought hardening increased with drought severity. Furthermore, one month of drought hardening contributed to both water conservation and the maintenance of cell differentiation under consecutive dry treatment, likely increasing the tolerance and survival of C. japonica seedlings under prolonged drought.


2019 ◽  
Vol 21 (1) ◽  
pp. 159 ◽  
Author(s):  
Yongkun Chen ◽  
Canhui Li ◽  
Jing Yi ◽  
Yu Yang ◽  
Chunxia Lei ◽  
...  

Potato is an important food crop and its production is susceptible to drought. Drought stress in crop growth is usually multiple- or long-term. In this study, the drought tolerant potato landrace Jancko Sisu Yari was treated with drought stress, rehydration and re-dehydration, and RNA-seq was applied to analyze the characteristics of gene regulation during these treatments. The results showed that drought-responsive genes mainly involved photosynthesis, signal transduction, lipid metabolism, sugar metabolism, wax synthesis, cell wall regulation, osmotic adjustment. Potato also can be recovered well in the re-emergence of water through gene regulation. The recovery of rehydration mainly related to patatin, lipid metabolism, sugar metabolism, flavonoids metabolism and detoxification besides the reverse expression of the most of drought-responsive genes. The previous drought stress can produce a positive responsive ability to the subsequent drought by drought hardening. Drought hardening was not only reflected in the drought-responsive genes related to the modified structure and cell components, but also in the hardening of gene expression or the “memory” of drought-responsive genes. Abundant genes involved photosynthesis, signal transduction, sugar metabolism, protease and protease inhibitors, flavonoids metabolism, transporters and transcription factors were subject to drought hardening or memorized drought in potato.


2018 ◽  
Vol 17 (2) ◽  
pp. 336-347 ◽  
Author(s):  
Shu-han ZHANG ◽  
Xue-feng XU ◽  
Ye-min SUN ◽  
Jun-lian ZHANG ◽  
Chao-zhou LI

Sign in / Sign up

Export Citation Format

Share Document