scholarly journals Replacement of Flexural and Shear Reinforcement of Double-Column Bridge Bent with CFRP under Combined loadings

2022 ◽  
Vol 961 (1) ◽  
pp. 012070
Author(s):  
Mustafa Kareem Hamzah

Abstract The bridge bent is the most critical structural component of short span bridge that highly affected by different types of loadings. The bent failure has been observed due to in plane and out of plane loadings. Strengthening techniques are utilized for existing bridges. However, a replacement technique can be used for the new bridges to avoid bent failure. Moreover, the effect of combined loading on bent performance need to be evaluated. Therefore, this study assessed the performance of bridge bent under in plane, out of plane and combined loadings. Furthermore, replace the traditional flexural and shear steel reinforcement of the columns with CFRP bars. The performance of bent is assessed numerically by finite element analysis. For this purpose, six numerical bent models are developed. The first three models with traditional steel bars and the remaining models with CFRP rebars. The results demonstrated that out of plane loadings has more impact on the bent structural performance than other loading cases. Flexural and shear failures are observed in the columns for models with steel rebars. The failure started from lower side of the column for both in plane and out of plane loadings showing low resistance. The steel rebars yielded in early stage of loading indicating limited stiffness. However, the bent performance has been enhanced by replacing rebars with CFRP. The bent stiffness has slightly improved by replacing with less diameter of CFRP rods and stirrups. In addition, the CFRP bars showed considerable resistance and hardly showed plasticity during apply loading indicating that the CFRP is suitable material to replace steel reinforcement.

2021 ◽  
pp. 136943322110015
Author(s):  
Rana Al-Dujele ◽  
Katherine Ann Cashell

This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial tension. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Jungwon Huh ◽  
In-Tae Kim ◽  
Jin-Hee Ahn

The shear buckling failure and strength of a web panel stiffened by stiffeners with corrosion damage were examined according to the degree of corrosion of the stiffeners, using the finite element analysis method. For this purpose, a plate girder with a four-panel web girder stiffened by vertical and longitudinal stiffeners was selected, and its deformable behaviors and the principal stress distribution of the web panel at the shear buckling strength of the web were compared after their post-shear buckling behaviors, as well as their out-of-plane displacement, to evaluate the effect of the stiffener in the web panel on the shear buckling failure. Their critical shear buckling load and shear buckling strength were also examined. The FE analyses showed that their typical shear buckling failures were affected by the structural relationship between the web panel and each stiffener in the plate girder, to resist shear buckling of the web panel. Their critical shear buckling loads decreased from 82% to 59%, and their shear buckling strength decreased from 88% to 76%, due to the effect of corrosion of the stiffeners on their shear buckling behavior. Thus, especially in cases with over 40% corrosion damage of the vertical stiffener, they can have lower shear buckling strength than their design level.


2000 ◽  
Vol 123 (4) ◽  
pp. 686-698 ◽  
Author(s):  
K. Iyer ◽  
C. A. Rubin ◽  
G. T. Hahn

Primary fretting fatigue variables such as contact pressure, slip amplitude and bulk cyclic stresses, at and near the contact interface between the rivet shank and panel hole in a single rivet-row, 7075-T6 aluminum alloy lap joint are presented. Three-dimensional finite element analysis is applied to evaluate these and the effects of interference and clamping stresses on the values of the primary variables and other overall measures of fretting damage. Two rivet geometries, non-countersunk and countersunk, are considered. Comparison with previous evaluations of the fretting conditions in similar but two-dimensional connections indicates that out-of-plane movements and attending effects can have a significant impact on the fatigue life of riveted connections. Variations of the cyclic stress range and other proponents of crack initiation are found to peak at distinct locations along the hole-shank interface, making it possible to predict crack initiation locations and design for extended life.


1999 ◽  
Vol 14 (7) ◽  
pp. 2905-2911 ◽  
Author(s):  
Sangsub Kim ◽  
Tae Soo Kang ◽  
Jung Ho Je

Epitaxial (Ba0.5Sr0.5) TiO3 thin films of two different thickness (∼25 and ∼134 nm) on MgO(001) prepared by a pulsed laser deposition method were studied by synchrotron x-ray scattering measurements. The film grew initially with a cube-on-cube relationship, maintaining it during further growth. As the film grew, the surface of the film became significantly rougher, but the interface between the film and the substrate did not. In the early stage of growth, the film was highly strained in a tetragonal structure (c/a = 1.04) with the longer axis parallel to the surface normal direction. As the growth proceeded further, it relaxed to a cubic structure with the lattice parameter near the bulk value, and the mosaic distribution improved significantly in both in- and out-of-plane directions. The thinner film (∼25 nm) showed only one domain limited mainly by the film thickness, but the thicker film (∼134 nm) exhibited three domains along the surface normal direction.


2022 ◽  
pp. 339-353
Author(s):  
Elango Natarajan ◽  
Muhammad Rusydi Muhammad Razif ◽  
AAM Faudzi ◽  
Palanikumar K.

Soft actuators are generally built to achieve extension, contraction, curling, or bending motions needed for robotic or medical applications. It is prepared with a cylindrical tube, braided with fibers that restrict the radial motion and produce the extension, contraction, or bending. The actuation is achieved through the input of compressed air with a different pressure. The stiffness of the materials controls the magnitude of the actuation. In the present study, Silastic-P1 silicone RTV and multi-wall carbon nanotubes (MWCNT) with reinforced silicone are considered for the evaluation. The dumbbell samples are prepared from both materials as per ASTM D412-06a (ISO 37) standard and their corresponding tensile strength, elongation at break, and tensile modulus are measured. The Ogden nonlinear material constants of respective materials are estimated and used further in the finite element analysis of extension, contraction, and bending soft actuators. It is observed that silicone RTV is better in high strain and fast response, whereas, silicone/MWCNT is better at achieving high actuation.


Author(s):  
Zheng Liu ◽  
Xu Chen ◽  
Xin Wang

In the present paper, three-dimensional clamped SENT specimens, which is one of the most widely used low-constraint and less-conservative specimen, are analyzed by using a crack compliance analysis approach and extensive finite element analysis. Considering the test standard (BS8571) recommended specimen sizes, the daylight to width ratio, H/W, is 10.0, the relative crack depth, a/W, is varied by 0.2, 0.3, 0.4, 0.5 or 0.6 and the relative plate thickness, B/W, is chosen by 1.0, 2.0 or 4.0, respectively. Complete solutions of fracture mechanics parameters, including stress intensity factor (K), in-plane T-stress (T11) and out-of-plane T-stress (T33) are calculated, and the results obtained from above two methods have a good agreement. Moreover, the combination of the effects of a/W and B/W on the stress intensity factor K, T11 and T33 stress are thus illustrated.


Author(s):  
Pedro J. Sousa ◽  
Francisco Barros ◽  
Paulo J. Tavares ◽  
Pedro M. G. P. Moreira

Rotating structures are important and commonly used in the transportation and energy generation fields, where a better understanding of the deformations these structures endure is essential for both the design and maintenance phases. This work presents a novel image sensing methodology for measuring the displacements of rotating parts in operation due to dynamic loading. This methodology employs 3D digital image correlation combined with a custom stroboscopic lighting solution to achieve apparent stillness of the target while it rotates and then processes the acquired data to remove small imprecisions and align it to the rotor’s intrinsic coordinate system. It was applied to an RC helicopter, whose blade deformation was measured and compared with a computational model, using fluid–structure interaction between computational fluid dynamics (CFD) and finite element analysis (FEA). Using live measurement techniques, it was possible to obtain the actual behaviour of the blades, which can be used to validate and tune computational models. The proposed methodology complements the methods available in the literature, which were centred around relative out-of-plane displacements, by enabling the comparison of absolute out-of-plane and in-plane ones.


2010 ◽  
Vol 26 (3) ◽  
pp. 345-353 ◽  
Author(s):  
S.-F. Hwang ◽  
J.-C. Wu ◽  
Evgeny Barkanovs ◽  
Rimantas Belevicius

AbstractA numerical method combining finite element analysis and a hybrid genetic algorithm is proposed to inversely determine the elastic constants from the vibration testing data. As verified from composite material specimens, the repeatability and accuracy of the proposed inverse determination method are confirmed, and it also proves that the concept of effective elastic constants is workable. Moreover, three different sets of assumptions to reduce the five independent elastic constants to four do not make clear difference on the obtained results by the proposed method. In addition, to obtain robust values of the five elastic constants for a transversely isotropic material, it is recommended to use the out-of-plane Poisson's ratio instead of the out-of-plane shear modulus as the fifth one.


Author(s):  
Hector E. Medina ◽  
Brian Hinderliter

Due to the aging of structures, the issues of plant life management and license extension are receiving increasing emphasis in many countries. Understanding failure of structures due to random roughness on surfaces at early stages of degradation is therefore crucial. It has been shown that even slightly sinusoidal roughness can increase stress concentration by a factor of 2 or 3, which can be critical for a brittle component due to the significant reduction of its load-carrying capacity, even with slight roughness. A more in-depth fracture analysis of surfaces possessing random roughness is needed in order to more profoundly understand, and hence develop models that will predict more accurately, failure of structural materials exposed to degrading, in-service conditions. Using a technique previously developed and successfully applied, replicates of random rough surfaces, imprinted with various levels of degradation, and at three distinct auto correlation lengths, were realized and mechanical testing was performed on them. The stress, strain and energy at fracture are reported. Finite element analysis was carried out to elucidate experimental results. Besides the expected reduction of energy at fracture with degradation, a relaxation region was observed where the energy slightly increases. This phenomenon implies that even after degradation has progressed there is a local maximum of energy at fracture due to the competing effect of tendons and growth of pits. The results find applications on the early stage of maintenance of surfaces of structures in service.


Sign in / Sign up

Export Citation Format

Share Document