scholarly journals Neutrophils lacking ERM proteins polarize and crawl directionally but have decreased adhesion strength

2020 ◽  
Vol 4 (15) ◽  
pp. 3559-3571
Author(s):  
Sumith R. Panicker ◽  
Tadayuki Yago ◽  
Bojing Shao ◽  
Rodger P. McEver

Abstract Ezrin/radixin/moesin (ERM) proteins are adaptors that link the actin cytoskeleton to the cytoplasmic domains of membrane proteins. Leukocytes express mostly moesin with lower levels of ezrin but no radixin. When leukocytes are activated, ERMs are postulated to redistribute membrane proteins from microvilli into uropods during polarization and to transduce signals that influence adhesion and other responses. However, these functions have not been tested in leukocytes lacking all ERMs. We used knockout (KO) mice with neutrophils lacking ezrin, moesin, or both proteins (double knockout [DKO]) to probe how ERMs modulate cell shape, adhesion, and signaling in vitro and in vivo. Surprisingly, chemokine-stimulated DKO neutrophils still polarized and redistributed ERM-binding proteins such as PSGL-1 and CD44 to the uropods. Selectin binding to PSGL-1 on moesin KO or DKO neutrophils activated kinases that enable integrin-dependent slow rolling but not those that generate neutrophil extracellular traps. Flowing neutrophils of all genotypes rolled normally on selectins and, upon chemokine stimulation, arrested on integrin ligands. However, moesin KO and DKO neutrophils exhibited defective integrin outside-in signaling and reduced adhesion strength. In vivo, DKO neutrophils displayed normal directional crawling toward a chemotactic gradient, but premature detachment markedly reduced migration from venules into inflamed tissues. Our results demonstrate that stimulated neutrophils do not require ERMs to polarize or to move membrane proteins into uropods. They also reveal an unexpected contribution of moesin to integrin outside-in signaling and adhesion strengthening.

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii295-iii295
Author(s):  
Mikaela Nevin ◽  
Janine Gallego ◽  
Xiaohua Song ◽  
Qiang Jiang ◽  
Alan Underhill ◽  
...  

Abstract BACKGROUND The identification of H3.3/H3.1K27M in most DIPG has changed our understanding of this disease. H3K27M mutations usually demonstrate global loss of H3K27 trimethylation (me3) with gain of H3K27 acetylation (ac). Single cell RNAseq has identified the putative cell of origin as oligodendroglial progenitor cells (OPC). The distalless gene family is necessary for the differentiation and tangential migration of committed neural progenitors to become GABAergic interneurons. Dlx1/Dlx2 double knockout (DKO) cells from the ganglionic eminences (GE) transplanted into a wild-type environment become oligodendrocytes. RESULTS We identified DLX2 occupancy of early (Olig2, Nkx2.2) and late (Myt1, Plp1) genes required for OPC differentiation in vivo and confirmed direct DLX2 protein-promoter DNA binding in vitro. Co-expression of Dlx2 with target sequences reduced reporter gene expression in vitro. There was increased expression of OLIG2, NKX2.2 and PLP-1 expression in vivo, consistent with de-repression in the absence of Dlx1/Dlx2 function. Transient over-expression of a Dlx2-GFP construct into murine DIPG cells from a GEMM that develops DIPG resulted in significant increases in expression of Gad isoforms with concomitant decreases in Olig2 and Nkx2.2. Dlx2-transfected mDIPG cells also demonstrated reduced migration, invasion and colony formation in vitro. Of significance, there was global restoration of H3K27me3 with corresponding loss of H3K27ac expression in transfected cells compared to controls. CONCLUSIONS DLX2 promotes GABAergic differentiation and migration while concomitantly repressing OPC differentiation in vivo. Developmental reprogramming of mDIPG cells by DLX2 demonstrates the potential role for directed differentiation strategies towards improving patient outcomes for this devastating pediatric cancer.


2021 ◽  
Author(s):  
Hyuk Nam Kwon ◽  
Kristen Kurtzeborn ◽  
Xing Jin ◽  
Bruno Reversade ◽  
Sunghyouk Park ◽  
...  

Nephron endowment is defined by fetal kidney growth and it critically dictates renal health in adults. Despite the advances in understanding the molecular regulation of nephron progenitor maintenance, propagation, and differentiation, the causes for low congenital nephron count and contribution of basic metabolism to nephron progenitor regulation remain poorly studied. Here we have analyzed the metabolic effects that depend on and are triggered by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, which is an essential intracellular cascade required for nephron progenitor maintenance. Our combined approach utilizing LC/MS-based metabolomics and transcriptional profiling of MAPK/ERK-deficient cells identified 18 out of total 46 metabolites (38 untargeted and 8 targeted) that were down-regulated. These represent glycolysis, gluconeogenesis, pentose phosphate, glycine, and proline pathways among others. We focused our functional characterization of identified metabolites on pyruvate and proline. Use of in vitro kidney cultures revealed dosage-specific functions for pyruvate in not only controlling ureteric bud branching but also determining progenitor and differentiated (tip-trunk) cell identities. Our in vivo characterization of Pycr1/2 double knockout kidneys revealed functional requirement for proline metabolism in nephron progenitor maintenance. In summary, our results demonstrate that MAPK/ERK cascade regulates energy and amino acid metabolism in developing kidney where these metabolic pathways specifically regulate progenitor preservation.


1996 ◽  
Vol 135 (1) ◽  
pp. 37-51 ◽  
Author(s):  
M Hirao ◽  
N Sato ◽  
T Kondo ◽  
S Yonemura ◽  
M Monden ◽  
...  

The ERM proteins, ezrin, radixin, and moesin, are involved in the actin filament/plasma membrane interaction as cross-linkers. CD44 has been identified as one of the major membrane binding partners for ERM proteins. To examine the CD44/ERM protein interaction in vitro, we produced mouse ezrin, radixin, moesin, and the glutathione-S-transferase (GST)/CD44 cytoplasmic domain fusion protein (GST-CD44cyt) by means of recombinant baculovirus infection, and constructed an in vitro assay for the binding between ERM proteins and the cytoplasmic domain of CD44. In this system, ERM proteins bound to GST-CD44cyt with high affinity (Kd of moesin was 9.3 +/- 1.6nM) at a low ionic strength, but with low affinity at a physiological ionic strength. However, in the presence of phosphoinositides (phosphatidylinositol [PI], phosphatidylinositol 4-monophosphate [4-PIP], and phosphatidylinositol 4.5-bisphosphate [4,5-PIP2]), ERM proteins bound with a relatively high affinity to GST-CD44cyt even at a physiological ionic strength: 4,5-PIP2 showed a marked effect (Kd of moesin in the presence of 4,5-PIP2 was 9.3 +/- 4.8 nM). Next, to examine the regulation mechanism of CD44/ERM interaction in vivo, we reexamined the immunoprecipitated CD44/ERM complex from BHK cells and found that it contains Rho-GDP dissociation inhibitor (GDI), a regulator of Rho GTPase. We then evaluated the involvement of Rho in the regulation of the CD44/ERM complex formation. When recombinant ERM proteins were added and incubated with lysates of cultured BHK cells followed by centrifugation, a portion of the recombinant ERM proteins was recovered in the insoluble fraction. This binding was enhanced by GTP gamma S and markedly suppressed by C3 toxin, a specific inhibitor of Rho, indicating that the GTP form of Rho in the lysate is required for this binding. A mAb specific for the cytoplasmic domain of CD44 also markedly suppressed this binding, identifying most of the binding partners for exogenous ERM proteins in the insoluble fraction as CD44. Consistent with this binding analysis, in living BHK cells treated with C3 toxin, most insoluble ERM proteins moved to soluble compartments in the cytoplasm, leaving CD44 free from ERM. These findings indicate that Rho regulates the CD44/ERM complex formation in vivo and that the phosphatidylinositol turnover may be involved in this regulation mechanism.


2005 ◽  
Vol 73 (12) ◽  
pp. 8433-8436 ◽  
Author(s):  
A. A. Fadl ◽  
J. Sha ◽  
G. R. Klimpel ◽  
J. P. Olano ◽  
C. L. Galindo ◽  
...  

ABSTRACT We constructed Salmonella enterica serovar Typhimurium double-knockout mutants in which either the lipoprotein A (lppA) or the lipoprotein B (lppB) gene was deleted from an msbB-negative background strain by marker exchange mutagenesis. These mutants were highly attenuated when tested with in vitro and in vivo models of Salmonella pathogenesis.


1991 ◽  
Vol 174 (5) ◽  
pp. 1167-1177 ◽  
Author(s):  
J Vuopio-Varkila ◽  
G K Schoolnik

Enteropathogenic Escherichia coli grow as discrete colonies on the mucous membranes of the small intestine. A similar pattern can be demonstrated in vitro; termed localized adherence (LA), it is characterized by the presence of circumscribed clusters of bacteria attached to the surfaces of cultured epithelial cells. The LA phenotype was studied using B171, an O111:NM enteropathogenic E. coli (EPEC) strain, and HEp-2 cell monolayers. LA could be detected 30-60 min after exposure of HEp-2 cells to B171. However, bacteria transferred from infected HEp-2 cells to fresh monolayers exhibited LA within 15 min, indicating that LA is an inducible phenotype. Induction of the LA phenotype was found to be associated with de novo protein synthesis and changes in the outer membrane proteins, including the production of a new 18.5-kD polypeptide. A partial NH2-terminal amino acid sequence of this polypeptide was obtained and showed it to be identical through residue 12 to the recently described bundle-forming pilus subunit of EPEC. Expression of the 18.5-kD polypeptide required the 57-megadalton enteropathogenic E. coli adherence plasmid previously shown to be required for the LA phenotype in vitro and full virulence in vivo. This observation, the correspondence of the 18.5-kD polypeptide to an EPEC-specific pilus protein, and the temporal correlation of its expression with the development of the LA phenotype suggest that it may contribute to the EPEC colonial mode of growth.


2018 ◽  
Vol 29 (6) ◽  
pp. 1624-1635 ◽  
Author(s):  
Clara Vilches ◽  
Emilia Boiadjieva-Knöpfel ◽  
Susanna Bodoy ◽  
Simone Camargo ◽  
Miguel López de Heredia ◽  
...  

Background Reabsorption of amino acids (AAs) across the renal proximal tubule is crucial for intracellular and whole organism AA homeostasis. Although the luminal transport step is well understood, with several diseases caused by dysregulation of this process, the basolateral transport step is not understood. In humans, only cationic aminoaciduria due to malfunction of the basolateral transporter y+LAT1/CD98hc (SLC7A7/SLC3A2), which mediates the export of cationic AAs, has been described. Thus, the physiologic roles of basolateral transporters of neutral AAs, such as the antiporter LAT2/CD98hc (SLC7A8/SLC3A2), a heterodimer that exports most neutral AAs, and the uniporter TAT1 (SLC16A10), which exports only aromatic AAs, remain unclear. Functional cooperation between TAT1 and LAT2/CD98hc has been suggested by in vitro studies but has not been evaluated in vivo.Methods To study the functional relationship of TAT1 and LAT2/CD98hc in vivo, we generated a double-knockout mouse model lacking TAT1 and LAT2, the catalytic subunit of LAT2/CD98hc (dKO LAT2-TAT1 mice).Results Compared with mice lacking only TAT1 or LAT2, dKO LAT2-TAT1 mice lost larger amounts of aromatic and other neutral AAs in their urine due to a tubular reabsorption defect. Notably, dKO mice also displayed decreased tubular reabsorption of cationic AAs and increased expression of y+LAT1/CD98hc.Conclusions The LAT2/CD98hc and TAT1 transporters functionally cooperate in vivo, and y+LAT1/CD98hc may compensate for the loss of LAT2/CD98hc and TAT1, functioning as a neutral AA exporter at the expense of some urinary loss of cationic AAs. Cooperative and compensatory mechanisms of AA transporters may explain the lack of basolateral neutral aminoacidurias in humans.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3585-3591 ◽  
Author(s):  
Keith E. Norman ◽  
Andreas G. Katopodis ◽  
Gebhard Thoma ◽  
Frank Kolbinger ◽  
Anne E. Hicks ◽  
...  

Abstract Selectin-dependent rolling is the earliest observable event in the recruitment of leukocytes to inflamed tissues. Several glycoproteins decorated with sialic acid, fucose, and/or sulfate have been shown to bind the selectins. The best-characterized selectin ligand is P-selectin glycoprotein-1 (PSGL-1) that supports P-selectin– dependent rolling in vitro and in vivo. In vitro studies have suggested that PSGL-1 may also be a ligand for E- and L-selectins. To study the in vivo function of PSGL-1, without the influence of other leukocyte proteins, the authors observed the interaction of PSGL-1–coated microspheres in mouse venules stimulated to express P- and/or E-selectin. Microspheres coated with functional recombinant PSGL-1 rolled in surgically stimulated and tumor necrosis factor alpha (TNFα)-stimulated mouse venules. P-selectin deficiency or inhibition abolished microsphere rolling in surgically and TNFα-stimulated venules, whereas E-selectin deficiency or inhibition increased microsphere rolling velocity in TNFα-stimulated venules. The results suggest that P-selectin–PSGL-1 interaction alone is sufficient to mediate rolling in vivo and that E-selectin–PSGL-1 interaction supports slow rolling.


Author(s):  
M Nevin ◽  
X Song ◽  
S Japoni ◽  
J Zagozewski ◽  
Q Jiang ◽  
...  

Introduction: Diffuse intrinsic pontine glioma (DIPG) is refractory to therapy. The identification of histone H3.1/H3.3 K27M mutations in most DIPG has provided new insights. The DLX homeobox genes are expressed in the developing forebrain. The Dlx1/Dlx2 double knockout (DKO) mouse loses tangential GABAergic interneuron migration to the neocortex. We have identified genes that encode glutamic acid decarboxylase (GAD) enzymes as direct targets of DLX1/DLX2. In DIPG patients with H3.3 K27M mutations there is decreased Dlx2 and increased expression of the myelin transcription factor, Myt1. Methods and Results: We used bioinformatics approaches and chromatin immunoprecipitation (ChIP) assays to identify Olig2, Nkx2.2 and Myt1 promoter sequences as candidate DLX2 targets in vivo. DNA binding specificity was confirmed. The functional consequences of Dlx2 co-expression with reporter constructs of ChIP-isolated promoter fragments of Olig2 and Nkx2.2 demonstrated repression of gene targets in vitro. qPCR showed increased Olig2 and Nkx2.2 expression in the DKO forebrain. Stable transfection of a murine DIPG cell line with Dlx2 resulted in increased Gad1 and Gad2 and decreased Olig2 and Nkx2.2 expression. Of significance, we demonstrated decreased expression of H3.3 K27M and restoration of H3.3 K27 tri-methylation (me3). Conclusions: DLX transcription factors promote GABAergic interneuron and concomitant inhibition of oligodendroglial differentiation in neural progenitors by repression of a suite of genes including Olig2 and Nkx2.2. Restoration of H3 K27me3 expression in DIPG provides a promising lead towards exploration of differentiation as a therapeutic strategy for DIPG.


1983 ◽  
Vol 96 (3) ◽  
pp. 851-856 ◽  
Author(s):  
P Quinn ◽  
G Griffiths ◽  
G Warren

In the accompanying paper (Griffiths, G., P. Quinn, and G. Warren, 1983, J. Cell Biol., 96:835-850), we suggested that the Golgi stack could be divided into functionally distinct cis, medial, and trans compartments, each comprising one or two adjacent cisternae. These compartments were identified using Baby hamster kidney (BHK) cells infected with Semliki Forest virus (SFV) and treated with monensin. This drug blocked intracellular transport but not synthesis of the viral membrane proteins that were shown to accumulate in the medial cisternae. In consequence, these cisternae bound nucleocapsids. Here we show that this binding markedly increased the density of the medial cisternae and allowed us to separate them from cis and trans Golgi cisternae. A number of criteria were used to show that the intracellular capsid-binding membranes (ICBMs) observed in vivo were the same as those membranes sedimenting to a higher density in sucrose gradients in vitro, and this separation of cisternae was then used to investigate the distribution, within the Golgi stack, of some specific Golgi functions. After labeling for 2.5 min with [3H]palmitate, most of the fatty acid attached to viral membrane proteins was found in the ICBM fraction. Because the viral membrane proteins appear to move from cis to trans, this suggests that fatty acylation occurs in the cis or medial Golgi cisternae. In contrast, the distribution of alpha 1-2-mannosidase, an enzyme involved in trimming high-mannose oligosaccharides, and of galactosyl transferase, which is involved in the construction of complex oligosaccharides, was not affected by monensin treatment. Together with data in the accompanying paper, this would restrict these two Golgi functions to the trans cisternae. Our data strongly support the view that Golgi functions have specific and discrete locations within the Golgi stack.


2004 ◽  
Vol 165 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Shushi Nagamori ◽  
Irina N. Smirnova ◽  
H. Ronald Kaback

YidC of Echerichia coli, a member of the conserved Alb3/Oxa1/YidC family, is postulated to be important for biogenesis of membrane proteins. Here, we use as a model the lactose permease (LacY), a membrane transport protein with a known three-dimensional structure, to determine whether YidC plays a role in polytopic membrane protein insertion and/or folding. Experiments in vivo and with an in vitro transcription/translation/insertion system demonstrate that YidC is not necessary for insertion per se, but plays an important role in folding of LacY. By using the in vitro system and two monoclonal antibodies directed against conformational epitopes, LacY is shown to bind the antibodies poorly in YidC-depleted membranes. Moreover, LacY also folds improperly in proteoliposomes prepared without YidC. However, when the proteoliposomes are supplemented with purified YidC, LacY folds correctly. The results indicate that YidC plays a primary role in folding of LacY into its final tertiary conformation via an interaction that likely occurs transiently during insertion into the lipid phase of the membrane.


Sign in / Sign up

Export Citation Format

Share Document