Exogenous HSP70 attenuates nitroglycerin-induced migraine-like symptoms in mice

Author(s):  
Fengfang Wu ◽  
Yifeng Huang ◽  
Guifang Wei ◽  
Zhiwei Huang ◽  
Congwen Shi ◽  
...  

Although the connection between heat shock protein 70 (HSP70) and vestibular migraine is not clear, HSP70 is neuroprotective in other scenarios. This study aimed to investigate the potential of exogenous HSP70 for treating migraine-like symptoms in a mouse model of nitroglycerin (NTG) induced migraine. HSP70 levels were assessed in patients with vestibular migraine and healthy individuals by ELISA. Migraine was induced in mice by NTG and HSP70 expression was examined in the trigeminal nucleus caudalis (TNC) tissue of mice treated with NTG and NTG together with exogenous HSP70. The effects of exogenous HSP70 on migraine-like symptoms were assessed through behavioral assays. Finally, the impact of HSP70 on oxidative stress and NF-κB signaling in migraine mice was investigated. Serum HSP70 in patients with vestibular migraine was significantly lower than that of healthy individuals. NTG administration significantly suppressed HSP70 expression in mouse TNC tissue which were reversed by exogenous HSP70. HSP70 alleviated NTG-induced mechanical hypersensitivity, light aversion and anxiety-like behavior. Finally, exogenous HSP70 suppressed NTG-induced oxidative stress and NF-κB signaling. Our study suggests that exogenous HSP70 may be a potential therapy for alleviating migraine symptoms and our promising finding warrants further investigation of HSP70 for clinical application.

2017 ◽  
Vol 95 (6) ◽  
pp. 732-742 ◽  
Author(s):  
Abdelaziz M. Hussein ◽  
Khaled M. Abbas ◽  
Osama A. Abulseoud ◽  
El-Hussainy M.A. El-Hussainy

The present study investigated the effects of ferulic acid (FA) on pentylenetetrazole (PTZ)-induced seizures, oxidative stress markers (malondialdehyde (MDA), catalase, and reduced glutathione (GSH)), connexin (Cx) 43, heat shock protein 70 (Hsp 70), and monoamines (serotonin (5-HT) and norepinephrine (NE)) levels in a rat model of PTZ-induced kindling. Sixty Sprague Dawley rats were divided into 5 equal groups: (a) normal group; (b) FA group: normal rats received FA at a dose of 40 mg/kg daily; (c) PTZ group: normal rats received PTZ at a dose of 50 mg/kg i.p. on alternate days for 15 days; (d) FA-before group: treatment was the same as for the PTZ group, except rats received FA; and (e) FA-after group: rats received FA from sixth dose of PTZ. PTZ caused a significant increase in MDA, Cx43, and Hsp70 along with a significant decrease in GSH, 5-HT, and NE levels and CAT activity in the hippocampus (p < 0.05). Pre- and post-treatment with FA caused significant improvement in behavioral parameters, MDA, CAT, GSH, 5-HT, NE, Cx43 expression, and Hsp70 expression in the hippocampal region (p < 0.05). We conclude that FA has neuroprotective effects in PTZ-induced epilepsy, which might be due to attenuation of oxidative stress and Cx43 expression and upregulation of neuroprotective Hsp70 and neurotransmitters (5-HT and NE).


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Christonikos Leventelis ◽  
Nikolaos Goutzourelas ◽  
Aikaterini Kortsinidou ◽  
Ypatios Spanidis ◽  
Georgia Toulia ◽  
...  

Buprenorphine and methadone are two substances widely used in the substitution treatment of patients who are addicted to opioids. Although it is known that they partly act efficiently towards this direction, there is no evidence regarding their effects on the redox status of patients, a mechanism that could potentially improve their action. Therefore, the aim of the present investigation was to examine the impact of buprenorphine and methadone, which are administered as substitutes to heroin-dependent patients on specific redox biomarkers in the blood. From the results obtained, both the buprenorphine (n=21) and the methadone (n=21) groups exhibited oxidative stress and compromised antioxidant defence. This was evident by the decreased glutathione (GSH) concentration and catalase activity in erythrocytes and the increased concentrations of thiobarbituric acid reactive substances (TBARS) and protein carbonyls in the plasma, while there was no significant alteration of plasma total antioxidant capacity (TAC) compared to the healthy individuals (n=29). Furthermore, methadone revealed more severe oxidant action compared to buprenorphine. Based on relevant studies, the tested substitutes mitigate the detrimental effects of heroin on patient redox status; still it appears that they need to be boosted. Therefore, concomitant antioxidant administration could potentially enhance their beneficial action, and most probably, buprenorphine that did not induce oxidative stress in such a severe mode as methadone, on the regulation of blood redox status.


2020 ◽  
Vol 44 (3) ◽  
pp. 229-240
Author(s):  
Yasemin Gündüztepe ◽  
Setenay Mit ◽  
Ersel Geçioglu ◽  
Neslihan Gurbuz ◽  
Salim Neşelioğlu ◽  
...  

The aim of this study was to investigate the effect of acupuncture on dynamic thiol–disulphide homeostasis and ischemia-modified albumin (IMA) levels as a novel oxidative stress parameter in migraine patients. Acupuncture treatment was applied to the 22 volunteer migraine patients. The acupuncture treatment consists of 5 sessions with 2 sessions per week. Blood samples have been collected before performing acupuncture, after the 1st session and after the 5th session of the acupuncture. And for the control group blood samples were collected only once. A total of 44 participants were included in the study, and 24 of whom were diagnosed with migraine. The total thiol, native thiol and ischemia-modified albumin (IMA) levels in the serum were measured in all patients and healthy individuals. The dynamic disulphide bond and ischemia-modified albumin (IMA) levels were calculated from these values. The total and native thiol levels of migraine patients participating in the study were found to be significantly higher than the total and native thiol levels of healthy individuals. The total thiol, native thiol, and dynamic disulphide bond levels, and ischemia-modified albumin (IMA) were correlated with attack frequency, pain intensity, or migraine type. Thiol-disülfide homeostasis can play roles in the etiology and severity of Migraine.


2017 ◽  
Vol 68 (6) ◽  
pp. 1381-1383
Author(s):  
Allia Sindilar ◽  
Carmen Lacramioara Zamfir ◽  
Eusebiu Viorel Sindilar ◽  
Alin Constantin Pinzariu ◽  
Eduard Crauciuc ◽  
...  

Endometriosis is described as a gynecological disorder characterized by the presence of endometrial tissue outside the uterus; extensively explored because of its increasing incidency, with an indubitable diagnostic only after invasive surgery, with no efficient treatment, it has still many aspects to be elucidated. A growing body of facts sustain oxidative stress as a crucial factor between the numerous incriminated factors implicated in endometriosis ethiopathogeny. Reactive oxygen species(ROS) act to decline reproductive function. Our study intends to determine if an experimental model of endometriosis may be useful to assess the impact of oxidative stress on endometrial cells; we have used a murine model of 18 adult Wistar female rats. A fragment from their left uterine horn was implanted in the abdominal wall. After 4 weeks, a laparatomy was performed, 5 endometrial implants were removed, followed by biochemical tissue assay of superoxide dismutase(SOD) and catalase(CAT). At the end of the experiment, the rats were sacrificed, the implants were removed for histopathological exam and biochemical assay of antioxidant enzymes. The results revealed decreased levels of antioxidant enzymes, pointing on significant oxidative stress involvement.


2020 ◽  
Vol 19 (6) ◽  
pp. 466-477
Author(s):  
Saïd Boujraf ◽  
Rachida Belaïch ◽  
Abdelkhalek Housni ◽  
Badreeddine Alami ◽  
Tariq Skalli ◽  
...  

Objective: The aim of this paper is to demonstrate the impact of hemodialysis (HD) using synthetic Helixone membrane on brain functional control reorganization and plasticity in the cortical area generated while Oxidative Stress (OS) would be the main impacting agent. Methods: Indeed, 9 chronic HD patients underwent identical brain BOLD-fMRI assessment using the motor paradigm immediately before and after the same HD sessions. To assess the oxidative stress, the same patients underwent biological-assessment, including Malondialdehyde (MDA) and Total- Antioxidant-Activity (TAOA) reported in earlier papers. Results: BOLD-fMRI maps of motor areas obtained from HD-patients before and after HD sessions revealed a significant enhancement of activation volume of the studied motor cortex after HD reflecting brain plasticity. Results were correlated with OS assessed by the measurement of MDA and TAOA; this correlation was close to 1. Conclusion: Indeed, HD enhances the inflammatory state of brain tissues reflected by the increased OS. The functional brain reaction demonstrated a functional activity reorganization to overcome the inflammatory state and OS enhanced by HD process. This functional activity reorganization reveals brain plasticity induced by OS originated by HD.


2020 ◽  
Vol 10 (5) ◽  
pp. 578-586
Author(s):  
Areeg M. Abdelrazek ◽  
Shimaa A. Haredy

Background: Busulfan (Bu) is an anticancer drug with a variety of adverse effects for cancer patients. Oxidative stress has been considered as a common pathological mechanism and it has a key role in the initiation and progression of liver injury by Bu. Aim: The study aimed to evaluate the antioxidant impact of L-Carnitine and Coenzyme Q10 and their protective role against oxidative stress damage in liver tissues. Methods and Material: Thirty-six albino rats were divided equally into six groups. G1 (con), received I.P. injection of DMSO plus 1 ml of distilled water daily by oral gavages; G2 (Bu), received I.P. injection of Bu plus 1 ml of the distilled water daily; G3 (L-Car), received 1 ml of L-Car orally; G4 (Bu + L-Car) received I.P. injection of Bu plus 1 ml of L-Car, G5 (CoQ10) 1 ml of CoQ10 daily; and G6 (Bu + CoQ10) received I.P. injection of Bu plus 1 ml of CoQ10 daily. Results: The recent data showed that Bu induced significant (P<0.05) elevation in serum ALT, AST, liver GSSG, NO, MDA and 8-OHDG, while showing significant (P<0.05) decrease in liver GSH and ATP. On the other hand, L-Carnitine and Coenzyme Q10 ameliorated the negative effects prompted by Bu. Immunohistochemical expression of caspase-3 in liver tissues reported pathological alterations in Bu group while also showed significant recovery in L-Car more than CoQ10. Conclusion: L-Car, as well as CoQ10, can enhance the hepatotoxic effects of Bu by promoting energy production in oxidative phosphorylation process and by scavenging the free radicals.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 986
Author(s):  
Nada S. Aboelella ◽  
Caitlin Brandle ◽  
Timothy Kim ◽  
Zhi-Chun Ding ◽  
Gang Zhou

It has been well-established that cancer cells are under constant oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. Cancer cells can adapt to maintain redox homeostasis through a variety of mechanisms. The prevalent perception about ROS is that they are one of the key drivers promoting tumor initiation, progression, metastasis, and drug resistance. Based on this notion, numerous antioxidants that aim to mitigate tumor oxidative stress have been tested for cancer prevention or treatment, although the effectiveness of this strategy has yet to be established. In recent years, it has been increasingly appreciated that ROS have a complex, multifaceted role in the tumor microenvironment (TME), and that tumor redox can be targeted to amplify oxidative stress inside the tumor to cause tumor destruction. Accumulating evidence indicates that cancer immunotherapies can alter tumor redox to intensify tumor oxidative stress, resulting in ROS-dependent tumor rejection. Herein we review the recent progresses regarding the impact of ROS on cancer cells and various immune cells in the TME, and discuss the emerging ROS-modulating strategies that can be used in combination with cancer immunotherapies to achieve enhanced antitumor effects.


2021 ◽  
Vol 10 (5) ◽  
pp. 1148
Author(s):  
Makedonka Atanasovska Velkovska ◽  
Katja Goričar ◽  
Tanja Blagus ◽  
Vita Dolžan ◽  
Barbara Cvenkel

Oxidative stress and neuroinflammation are involved in the pathogenesis and progression of glaucoma. Our aim was to evaluate the impact of selected single-nucleotide polymorphisms in inflammation and oxidative stress genes on the risk of glaucoma, the patients’ clinical characteristics and the glaucoma phenotype. In total, 307 patients with primary open-angle glaucoma or ocular hypertension were enrolled. The control group included 339 healthy Slovenian blood donors. DNA was isolated from peripheral blood. Genotyping was performed for SOD2 rs4880, CAT rs1001179, GPX1 rs1050450, GSTP1 rs1695, GSTM1 gene deletion, GSTT1 gene deletion, IL1B rs1143623, IL1B rs16944, IL6 rs1800795 and TNF rs1800629. We found a nominally significant association of GSTM1 gene deletion with decreased risk of ocular hypertension and a protective role of IL1B rs16944 and IL6 rs1800629 in the risk of glaucoma. The CT and TT genotypes of GPX1 rs1050450 were significantly associated with advanced disease, lower intraocular pressure and a larger vertical cup–disc ratio. In conclusion, genetic variability in IL1B and IL6 may be associated with glaucoma risk, while GPX and TNF may be associated with the glaucoma phenotype. In the future, improved knowledge of these pathways has the potential for new strategies and personalised treatment of glaucoma.


Sign in / Sign up

Export Citation Format

Share Document