chl fluorescence
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Petra Skotnicová ◽  
Hristina Staleva-Musto ◽  
Valentyna Kuznetsova ◽  
David Bína ◽  
Minna M. Konert ◽  
...  

AbstractLife on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Plants collect photons by light harvesting complexes (LHC)—abundant membrane proteins containing chlorophyll and xanthophyll molecules. LHC-like proteins are similar in their amino acid sequence to true LHC antennae, however, they rather serve a photoprotective function. Whether the LHC-like proteins bind pigments has remained unclear. Here, we characterize plant LHC-like proteins (LIL3 and ELIP2) produced in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). Both proteins were associated with chlorophyll a (Chl) and zeaxanthin and LIL3 was shown to be capable of quenching Chl fluorescence via direct energy transfer from the Chl Qy state to zeaxanthin S1 state. Interestingly, the ability of the ELIP2 protein to quench can be acquired by modifying its N-terminal sequence. By employing Synechocystis carotenoid mutants and site-directed mutagenesis we demonstrate that, although LIL3 does not need pigments for folding, pigments stabilize the LIL3 dimer.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252031
Author(s):  
Yuan-yuan Li ◽  
Min Han ◽  
Rui-hua Wang ◽  
Ming-gang Gao

The flesh of the taproot of Raphanus sativus L. is rich in chlorophyll (Chl) throughout the developmental process, which is why the flesh is green. However, little is known about which genes are associated with Chl accumulation in this non-foliar, internal green tissue and whether the green flesh can perform photosynthesis. To determine these aspects, we measured the Chl content, examined Chl fluorescence, and carried out comparative transcriptome analyses of taproot flesh between green-fleshed “Cuishuai” and white-fleshed “Zhedachang” across five developmental stages. Numerous genes involved in the Chl metabolic pathway were identified. It was found that Chl accumulation in radish green flesh may be due to the low expression of Chl degradation genes and high expression of Chl biosynthesis genes, especially those associated with Part Ⅳ (from Protoporphyrin Ⅸ to Chl a). Bioinformatics analysis revealed that differentially expressed genes between “Cuishuai” and “Zhedachang” were significantly enriched in photosynthesis-related pathways, such as photosynthesis, antenna proteins, porphyrin and Chl metabolism, carbon fixation, and photorespiration. Twenty-five genes involved in the Calvin cycle were highly expressed in “Cuishuai”. These findings suggested that photosynthesis occurred in the radish green flesh, which was also supported by the results of Chl fluorescence. Our study provides transcriptome data on radish taproots and provides new information on the formation and function of radish green flesh.


Author(s):  
Koichi Kobayashi ◽  
Kenji Suetsugu ◽  
Hajime Wada

Abstract Photosynthesis with highly photoreactive chlorophyll (Chl) provides energy for plant growth but with simultaneous risk of photooxidative damage and photoprotection costs. Although the leafless orchid Cymbidium macrorhizon mostly depends on mycorrhizal fungi for carbon, it accumulates Chl particularly during fruiting and may not be fully mycoheterotrophic. In fact, stable isotopic analysis suggested that the fruiting C. macrorhizon specimens obtain a significant proportion of its carbon demands through photosynthesis. However, actual photosynthetic characteristics of this leafless orchid are unknown. To reveal the functionality of photosynthetic electron transport in C. macrorhizon, we compared its photosynthetic properties with those of its relative mixotrophic orchid Cymbidium goeringii and the model plant Arabidopsis thaliana. Compared with C. goeringii and A. thaliana, maximum photochemical efficiency of PSII was substantially low in C. macrorhizon. Chl fluorescence induction kinetics revealed that the electron transport capacity of PSII was limited in C. macrorhizon. Chl fluorescence analysis at 77 K suggested partial energetic disconnection of the light-harvesting antenna from the PSII reaction center in C. macrorhizon. Despite its low PSII photochemical efficiency, C. macrorhizon showed photosynthetic electron transport activity both in the field and under laboratory conditions. Cymbidium macrorhizon developed strong nonphotochemical quenching in response to increased light intensity as did C. goeringii, suggesting the functionality of photoprotective systems in this orchid. Moreover, C. macrorhizon fruit developed stomata on the pericarp and showed net O2-evolving activity. Our data demonstrate that C. macrorhizon can perform photosynthetic electron transport in the pericarp, although its contribution to net carbon acquisition may be limited.


2020 ◽  
Vol 3 (11(80)) ◽  
pp. 31-38
Author(s):  
K. Neverov

Red algae contain in their photosynthetic machinery water-soluble antenna complexes - phycobilisomes (PBSs) attached to thylakoid membranes to transfer excitation energy to photosystems. Strong light absorbed by the PBSs triggers a fast formation of transthylakoid ΔpH that follows the non-photochemical quenching of chlorophyll (Chl) fluorescence. The ΔpH build-up seems to be essential for photoprotecting the photosynthetic apparatus in the absence of xanthophyll cycle common to higher plants. However, the photoprotective mechanisms of red algae are not studied in details yet.  We present here our research of the Chl fluorescence quenching in unicellular red algae Rhodella violacea and its correlation with the ΔpH gradient being formed. The relation of this phenomenon to photoprotection of photosystem 2 (PS 2) in the normal and high light-acclimated Rhodella cells is also examined.  Under the photoinhibitory conditions (white light of 2000-3000 μE/m2s), the ΔpH-dependent Chl fluorescence quenching was found to delay the kinetics of PS 2 photoinhibition. The uncouplers like nigericin and NH4Cl are known to break down ΔpH gradient, lead to the dissipation of Chl fluorescence quenching followed by enhancing the PS 2 photoinhibition rate. The same effect showed far-red (FR) light consuming transthylakoid ΔpH. ATPase inhibitor, DCCD, having no impact on ΔpH didn’t influence PS 2 photoinhibition as well this implies the photoprotection to be fulfilled by the proton gradient rather than by ATP synthesis.  Long-term acclimation of Rhodella cells to higher irradiances (500-1000 μE/m2s) results in a partial loss of the periphery phycoerythrin-containing subunits by PBSs. The light-acclimated cultures display a higher resistance to the photoinhibitory light than the non-acclimated ones. This could be explained by diminishing the energy transfer from the reduced PBSs to PS 2 as well as light screening by the secondary carotenoids synthesized during light exposure.  Data on low-temperature (77K) fluorescence allow to evaluate the molecular mechanisms of light-induced Chl fluorescence suppression in Rhodella cells and its recovery in darkness. 


HortScience ◽  
2019 ◽  
Vol 54 (12) ◽  
pp. 2125-2133 ◽  
Author(s):  
Haiyan Zhao ◽  
Haiying Liang ◽  
Yibing Chu ◽  
Congcong Sun ◽  
Ning Wei ◽  
...  

Ginkgo biloba L. (ginkgo) is generally regarded as a tolerant species to environmental stresses. However, its tolerance mechanisms are not well understood, particularly for salt stress. To evaluate the species’ physiological responses to salt stress, 3-year-old ginkgo seedlings were exposed to a range of salinity levels (0% to 1.0% NaCl). A significant reduction in maximum (Fv/Fm) and actual (ΦPSII) quantum yields of photosystem II (PSII) photochemistry and the nonphotochemical quenching (qN) coefficient only occurred in late treatment stages at the salinity levels of 0.6% to 1.0%. As salt concentration increased, the response time and chlorophyll (Chl) fluorescence indices decreased. Overall, the activities of superoxide dismutase (SOD) and peroxidase (POD); contents of catalase (CAT), reduced glutathione (GSH), and flavonoids; and scavenging rate of free radicals enhanced under salinity stress. These data indicate that ginkgo seedlings are tolerant to low salt stress, and enzymatic and nonenzymatic antioxidant systems seem to work synergistically to reduce lipid oxidation under NaCl stress because malondialdehyde (MDA) content did not increase. Correlation and principal component analyses determined that water potential, Chl fluorescence parameters, activities of POD and SOD, contents of CAT and flavonoids, and hydroxyl (•OH) and diphenyl picrylhydrazyl (DPPH) free radical scavenging capability were sensitive to salt stress. These parameters can be used for in vitro or rapid and nondestructive monitoring of the responses of ginkgo seedlings to salinity stress. It is of significance to understand the tolerance mechanisms of ginkgo to salt stress, reduce the harm of NaCl and other snow-melting agents to ginkgo as shade trees, and develop new salt-tolerant varieties.


Hydrobiologia ◽  
2019 ◽  
Vol 847 (21) ◽  
pp. 4377-4387 ◽  
Author(s):  
Jonna Kuha ◽  
Marko Järvinen ◽  
Pauliina Salmi ◽  
Juha Karjalainen

AbstractOrganic matter (OM) other than living phytoplankton is known to affect fluorometric in situ assessments of chlorophyll in lakes. For this reason, calibrating fluorometric measurements for OM error is important. In this study, chlorophyll (Chl) fluorescence was measured in situ in multiple Finnish lakes using two sondes equipped with Chl fluorometers (ex.470/em.650–700 nm). OM absorbance (A420) was measured from water samples, and one of the two sondes was also equipped with in situ fluorometer for OM (ex.350/em.430 nm). The sonde with Chl and OM fluorometers was also deployed continuously on an automated water quality monitoring station on Lake Konnevesi. For data from multiple lakes, inclusion of water colour estimates into the calibration model improved the predictability of Chl assessments markedly. When OM absorbance or in situ OM fluorescence was used in the calibration model, predictability between the in situ Chl and laboratory Chl a assessments was also enhanced. However, correction was not superior to the one done with the water colour estimate. Our results demonstrated that correction with water colour assessments or in situ measurements of OM fluorescence offers practical means to overcome the variation due to OM when assessing Chl in humic lakes in situ.


2019 ◽  
Vol 223 (3) ◽  
pp. 1179-1191 ◽  
Author(s):  
Lianhong Gu ◽  
Jimei Han ◽  
Jeffrey D. Wood ◽  
Christine Y‐Y. Chang ◽  
Ying Sun

Sign in / Sign up

Export Citation Format

Share Document