scholarly journals Evaluation of Cell Death Potential of Lepidium sativum Seed Extracts in MCF-7 Cells and Molecular Docking-based Correlation of Identified Bioactive Components with Human Caspase-6 Protein

2022 ◽  
Vol 56 (1) ◽  
pp. 166-174
Author(s):  
Rajasekaran R ◽  
Suresh P.K
Author(s):  
R. Rajasekaran ◽  
P. K. Suresh

Seeds have been known to possess bioactive components with anti-cancer properties. This study aims to demonstrate the processes by which seed extracts from various sources induce cell death. Several assays have been employed to demonstrate the induction of cell death by the respective seed extracts. This review also underscores the importance of Grape Seed Proanthocyanidins (GSPs) in terms of inducing the aforesaid physiological form of seed extract-induced cell death. Furthermore, this review highlights the critical and pressing need to conduct comparative HTS-based strategies (with a battery of cell lines representing different cancers) to identify the major seed extracts that can reproducibly serve to augment the cell death induction capabilities of the existing battery of chemotherapeutic drugs/natural alternatives.


Author(s):  
Anuradha Thakur ◽  
Kamalpreet Kaur ◽  
Praveen Sharma ◽  
Ramit Singla ◽  
Sandeep Singh ◽  
...  

Background: Breast cancer (BC) is a leading cause of cancer-related deaths in women next to skin cancer. Estrogen receptors (ERs) play an important role in the progression of BC. Current anticancer agents have several drawbacks such as serious side effects and the emergence of resistance to chemotherapeutic drugs. As coumarins possess minimum side effect along with multi-drug reversal activity, it has a tremendous ability to regulate a diverse range of cellular pathways that can be explored for selective anticancer activity. Objectives: Synthesis and evaluation of new coumarin analogues for anti-proliferative activity on human breast cancer cell line MCF-7 along with exploration of binding interaction of the compounds for ER-α target protein by molecular docking. Method: In this study, the anti-proliferative activity of C-3 substituted coumarins analogues (1-17) has been evaluated against estrogen receptor-positive MCF-7 breast cancer cell lines. Molecular interactions and ADME study of the compounds were analyzed by using Schrodinger software. Results: Among the synthesized analogues 12 and 13 show good antiproliferative activity with IC50 values 1and 1.3 µM respectively. Molecular docking suggests a remarkable binding pose of all the seventeen compounds. Compounds 12 and 13 were found to exhibit dock score of -4.10 kcal/mol and -4.38 kcal/mol respectively. Conclusion: Compounds 12 and 13 showed the highest activity followed by 1 and 5. ADME properties of all compounds were in the acceptable range. The active compounds can be taken for lead optimization and mechanistic interventions for their in vivo study in the future.


2020 ◽  
Vol 20 (14) ◽  
pp. 1714-1721
Author(s):  
Hatem A. Abuelizz ◽  
El Hassane Anouar ◽  
Mohamed Marzouk ◽  
Mizaton H. Hasan ◽  
Siti R. Saleh ◽  
...  

Background: The use of tyrosinase has confirmed to be the best means of recognizing safe, effective, and potent tyrosinase inhibitors for whitening skin. Twenty-four 2-phenoxy(thiomethyl)pyridotriazolopyrimidines were synthesized and characterized in our previous studies. Objective: The present work aimed to evaluate their cytotoxicity against HepG2 (hepatocellular carcinoma), A549 (pulmonary adenocarcinoma), MCF-7 (breast adenocarcinoma) and WRL 68 (embryonic liver) cell lines. Methods: MTT assay was employed to investigate the cytotoxicity, and a tyrosinase inhibitor screening kit was used to evaluate the Tyrosinase (TYR) inhibitory activity of the targets. Results: The tested compounds exhibited no considerable cytotoxicity, and nine of them were selected for a tyrosinase inhibitory test. Compounds 2b, 2m, and 5a showed good inhibitory percentages against TYR compared to that of kojic acid (reference substance). Molecular docking was performed to rationalize the Structure-Activity Relationship (SAR) of the target pyridotriazolopyrimidines and analyze the binding between the docked-selected compounds and the amino acid residues in the active site of tyrosinase. Conclusion: The target pyridotriazolopyrimidines were identified as a new class of tyrosinase inhibitors.


2018 ◽  
Vol 18 (8) ◽  
pp. 1184-1196 ◽  
Author(s):  
Abdel-Ghany A. El-Helby ◽  
Helmy Sakr ◽  
Rezk R.A. Ayyad ◽  
Khaled El-Adl ◽  
Mamdouh M. Ali ◽  
...  

Background: Extensive studies were reported in the synthesis of several phthalazine derivatives as promising anticancer agents as potent VEGFR-2 inhibitors. Vatalanib (PTK787) was the first anilinophthalazine published derivative as a potent inhibitor of VEGFR. The discovery of vatalanib as a clinical candidate led to the design and synthesis of different anilinophthalazine derivatives as potent inhibitors for VEGFR-2. The objective of present research work is the synthesis of new agents with the same essential pharmacophoric features of the reported and clinically used VEGFR-2 inhibitors (e.g vatalanib and sorafenib). The main core of our molecular design rationale comprised bioisosteric modification strategies of VEGFR-2 inhibitors at four different positions. </P><P> Material and Methods: A correlation between structure and biological activity of our designed phthalazines was established using molecular docking and VEGFR-2 kinase assay. Results and Discussion: In view of their expected anticancer activity, novel triazolo[3,4-a]phthalazine derivatives 5-6a-o and 3-substituted-bis([1,2,4]triazolo)[3,4-a:4',3'-c]phthalazines 9a-b were designed, synthesized and evaluated for their anti-proliferative activity against two human tumor cell lines HCT-116 human colon adenocarcinoma and MCF-7 breast cancer. It was found that, compound 6o the most potent derivative against both HCT116 and MCF-7 cancer cell lines. Compounds 6o, 6m, 6d and 9b showed the highest anticancer activities against HCT116 human colon adenocarcinoma with IC50 of 7±0.06, 13±0.11, 15±0.14 and 23±0.22 µM respectively while compounds 6o, 6d, 6a and 6n showed the highest anticancer activities against MCF-7 breast cancer with IC50 of 16.98±0.15, 18.2±0.17, 57.54±0.53 and 66.45±0.67 µM respectively. Sorafenib as a highly potent VEGFR-2 inhibitor was used as a reference drug with IC50 of 5.47±0.3 and 7.26±0.3 µM respectively. Nine compounds were further evaluated for their VEGFR-2 inhibitory activity. Compounds 6o, 6m, 6d and 9b emerged as the most active counterparts against VEGFR-2 with IC50 values of 0.1±0.01, 0.15±0.02, 0.28±0.03 and 0.38±0.04 µM, respectively comparable to that of sorafenib (IC50 = 0.1±0.02) µM. Furthermore, molecular docking studies were carried out for all synthesized compounds to investigate their binding pattern and predict their binding affinities towards VEGFR-2 active site. In silico ADMET studies were calculated for the tested compounds. Most of our designed compounds exhibited good ADMET profile. Conclusion: The obtained results showed that, the most active compounds could be useful as a template for future design, optimization, adaptation and investigation to produce more potent and selective VEGFR-2 inhibitors with higher anticancer analogs.


Cells ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Umamaheswari Natarajan ◽  
Thiagarajan Venkatesan ◽  
Vijayaraghavan Radhakrishnan ◽  
Shila Samuel ◽  
Appu Rathinavelu

Gene expression is often altered by epigenetic modifications that can significantly influence the growth ability and progression of cancers. SAHA (Suberoylanilide hydroxamic acid, also known as Vorinostat), a well-known Histone deacetylase (HDAC) inhibitor, can stop cancer growth and metastatic processes through epigenetic alterations. On the other hand, Letrozole is an aromatase inhibitor that can elicit strong anti-cancer effects on breast cancer through direct and indirect mechanisms. A newly developed inhibitor, RG7388 specific for an oncogene-derived protein called MDM2, is in clinical trials for the treatment of various cancers. In this paper, we performed assays to measure the effects of cell cycle arrest resulting from individual drug treatments or combination treatments with SAHA + letrozole and SAHA + RG7388, using the MCF-7 breast cancer cells. When SAHA was used individually, or in combination treatments with RG7388, a significant increase in the cytotoxic effect was obtained. Induction of cell cycle arrest by SAHA in cancer cells was evidenced by elevated p21 protein levels. In addition, SAHA treatment in MCF-7 cells showed significant up-regulation in phospho-RIP3 and MLKL levels. Our results confirmed that cell death caused by SAHA treatment was primarily through the induction of necroptosis. On the other hand, the RG7388 treatment was able to induce apoptosis by elevating BAX levels. It appears that, during combination treatments, with SAHA and RG7388, two parallel pathways might be induced simultaneously, that could lead to increased cancer cell death. SAHA appears to induce cell necroptosis in a p21-dependent manner, and RG7388 seems to induce apoptosis in a p21-independent manner, outlining differential mechanisms of cell death induction. However, further studies are needed to fully understand the intracellular mechanisms that are triggered by these two anti-cancer agents.


2021 ◽  
Author(s):  
Jing Yang ◽  
Chao-Tao Tang ◽  
Ruiri Jin ◽  
Bixia Liu ◽  
Peng Wang ◽  
...  

Abstract Huanglian jiedu decoction (HLJDD) is a heat-clearing and detoxifying agent composed of four kinds of Chinese herbal medicine. Previous studies have shown that HLJDD can improve the inflammatory response of ulcerative colitis (UC) and maintain intestinal barrier function. However, its molecular mechanism is not completely clear. In this study, we verified the bioactive components (BCI) and potential targets of HLJDD in the treatment of UC by means of network pharmacology and molecular docking, and constructed the pharmacological network and PPI network. Then the core genes were enriched by GO and KEGG. Finally, the bioactive components were docked with the key targets to verify the binding ability between them. A total of 54 active components related to UC were identified. Ten genes are considered to be very important to PPI network. Functional analysis showed that these target genes were mainly involved in the regulation of cell response to different stimuli, IL-17 signal pathway and TNF signal pathway. The results of molecular docking showed that the active components of HLJDD had good affinity with Hub gene. This study systematically elucidates the "multi-component, multi-target, multi-pathway" mechanism of anti-UC with HLJDD for the first time, suggesting that HLJDD or its active components may be candidate drugs for the treatment of ulcerative colitis.


2022 ◽  
Author(s):  
Selvaraj Shyamsivappan ◽  
Raju Vivek ◽  
Thangaraj Suresh ◽  
Palanivel Naveen ◽  
Kaviyarasu Adhigaman ◽  
...  

A progression of new N-(3'-acetyl-8-nitro-2,3-dihydro-1H,3'H-spiro[quinoline-4,2'-[1,3,4]thiadiazol]-5'-yl) acetamide derivatives were synthesized from potent 8-nitro quinoline-thiosemicarbazones. The synthesized compounds were characterized by different spectroscopic studies and single X-ray crystallographic studies. The compounds were...


Author(s):  
M. Sathish Kumar ◽  
M. Vijey Aanandhi

The fused pyrimidine derivatives are potent tyrosine kinase and thymidylate synthase inhibitors. The compound 3-(4-sulphonyl amino)-2-methyl thio-6-phenyl azo-5, 7-dimethyl pyrido(2,3-d)pyrimidin-4-one was synthesized from Ethyl 2-amino-4,6-dimethylpyridine-3-carboxylate, benzene diazonium chloride, benzene sulphonyl amino isothiocyanate in subsequent reactions. 1-(1, 3-benzothiazol-2-yl)-3-methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidines were synthesized from 1, 3-benzothiazole, 2-thiol, Hydrazine Hydrate, 2-hydrazinyl-1, 3-benzothiazole and aldehydes in subsequent reactions. Twenty-five derivatives pyrimidine scaffolds were designed and performed molecular docking studies for the ability to inhibit the target protein using molecular docking simulation, selective compounds were synthesized and characterized by spectral methods. All the synthesized compounds evaluated for their antioxidant activity and MTT assay exhibited compounds 13c, 13e and 14d can be potential anticancer candidates against MCF-7, Hep G2 and Hela cell lines respectively. Based on all the studies conclude that good agreement was observed between the top-ranked docking scores and top experimental inhibitors when compared with standards ascorbic acid and imatinib. Hence, the compounds could be considered as new anticancer hits for further lead optimization.


2021 ◽  
Author(s):  
Zeynep Ates-Alagoz ◽  
Mehmet Murat Kisla ◽  
Fikriye Zengin Karadayi ◽  
Sercan Baran ◽  
Tuğba Somay Doğan ◽  
...  

Several indole-thiazolidinedione derivatives (9–24) were designed and synthesized as CDK6 inhibitors, and their anticancer activity was probed on the MCF-7 cell line and the effects on gene expression profiles were elucidated.


Sign in / Sign up

Export Citation Format

Share Document