scholarly journals The Effect of Nitrogen Linear Flow on Lubricant Removal and Sintering Densification of Alumix 431D Grade Powder

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1259
Author(s):  
Jan Kazior ◽  
Tadeusz Pieczonka ◽  
Mateusz Laska

ECKA Granules Alumix 431D commercial grade, press ready, pre-alloyed aluminium-based powder containing 1.5 mass% of Acrawax C was used to study the effect of nitrogen linear flow on de-lubrication and sintering densification. In situ dimensional changes were controlled by dilatometry. Microstructural observations of sintered compacts were also performed. The results clearly showed the strong influence of nitrogen linear flow on de-lubrication, and thus on the sintering behaviour of the examined powder. High nitrogen linear flow is required to produce the desired sintered microstructure—characterised by residual porosity. In contrast, at low nitrogen velocity, the lubricant removal is not complete, which in turn significantly impedes densification.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mathias Frontini ◽  
Arnaud Boisnard ◽  
Julien Frouin ◽  
Malika Ouikene ◽  
Jean Benoit Morel ◽  
...  

Abstract Background Nitrogen fertilization is known to increase disease susceptibility, a phenomenon called Nitrogen-Induced Susceptibility (NIS). In rice, this phenomenon has been observed in infections with the blast fungus Magnaporthe oryzae. A previous classical genetic study revealed a locus (NIS1) that enhances susceptibility to rice blast under high nitrogen fertilization. In order to further address the underlying genetics of plasticity in susceptibility to rice blast after fertilization, we analyzed NIS under greenhouse-controlled conditions in a panel of 139 temperate japonica rice strains. A genome-wide association analysis was conducted to identify loci potentially involved in NIS by comparing susceptibility loci identified under high and low nitrogen conditions, an approach allowing for the identification of loci validated across different nitrogen environments. We also used a novel NIS Index to identify loci potentially contributing to plasticity in susceptibility under different nitrogen fertilization regimes. Results A global NIS effect was observed in the population, with the density of lesions increasing by 8%, on average, under high nitrogen fertilization. Three new QTL, other than NIS1, were identified. A rare allele of the RRobN1 locus on chromosome 6 provides robust resistance in high and low nitrogen environments. A frequent allele of the NIS2 locus, on chromosome 5, exacerbates blast susceptibility under the high nitrogen condition. Finally, an allele of NIS3, on chromosome 10, buffers the increase of susceptibility arising from nitrogen fertilization but increases global levels of susceptibility. This allele is almost fixed in temperate japonicas, as a probable consequence of genetic hitchhiking with a locus involved in cold stress adaptation. Conclusions Our results extend to an entire rice subspecies the initial finding that nitrogen increases rice blast susceptibility. We demonstrate the usefulness of estimating plasticity for the identification of novel loci involved in the response of rice to the blast fungus under different nitrogen regimes.


Analyses of the alimentary contents flowing to the duodenum of sheep during 24 h show that when the sheep are consuming a low-nitrogen diet more total nitrogen and amino nitrogen pass to the duodenum than are eaten daily in the food whereas when the sheep are eating high nitrogen diets, less total nitrogen and less amino nitrogen pass to the duodenum. The disparity between the total nitrogen and amino nitrogen content of the diets largely disappeared by the time the alimentary contents reached the terminal part of the ileum. From 64 to 68% of the nitrogen entering the duodenum and 54 to 64% of the nitrogen in the ileal contents was in the form of amino nitrogen. Proportionately more of the amino nitrogen was in solution in the ileal contents than in the duodenal contents. Losses of amino acids in the stomach when a high-nitrogen diet was consumed were especially large for glutamic acid, aspartic acid, proline, arginine and leucine. They were least for cystine and threonine. Gains of amino acids in the stomach when low nitrogen diets were consumed were all substantial except for proline, where a loss was found when hay and flaked maize were given. When these changes are considered as proportions of the quantities eaten then trends are similar for all acids. Changes in the molar proportions of the amino acids present in hydrolysates of the duodenal and ileal contents are discussed together with the significance of these changes in relation to the nutrition of the sheep.


2017 ◽  
Vol 5 (18) ◽  
pp. 8461-8476 ◽  
Author(s):  
Vidyanand Vijayakumar ◽  
Bihag Anothumakkool ◽  
Arun Torris A. T. ◽  
Sanoop B. Nair ◽  
Manohar V. Badiger ◽  
...  

The UV-assisted in situ generation of a gel polymer electrolyte (GPE) on the micro- and macro-pores of commercial grade carbon is used to achieve a liquid-like electrode–electrolyte interface in an all solid-state flexible supercapacitor.


2019 ◽  
Vol 20 (23) ◽  
pp. 5893 ◽  
Author(s):  
Wei Xin ◽  
Lina Zhang ◽  
Wenzhong Zhang ◽  
Jiping Gao ◽  
Jun Yi ◽  
...  

Nitrogen is an essential nutrient for plant growth and basic metabolic processes. Root systems play an important role in the ability of plants to obtain nutrients from the soil, and are closely related to the growth and development of above-ground plants. Root morphology analysis showed that root growth was induced under low-nitrogen conditions and inhibited under high-nitrogen conditions. To better understand the molecular mechanisms and metabolic basis underlying the rice root response to nitrogen availability, an integrated analysis of the rice root transcriptome and metabolome under three environmental conditions (low-, control, and high-nitrogen conditions) was conducted. A total of 262 and 262 differentially level metabolites were identified under low- and high-nitrogen conditions, respectively. A total of 696 and 808 differentially expressed genes were identified under low- and high-nitrogen conditions, respectively. For both the differentially expressed genes and metabolites, KEGG pathway analysis indicated that amino acid metabolism, carbon and nitrogen metabolism, phenylpropanoid metabolism, and phytohormones’ signal transduction were significantly affected by nitrogen availability. Additionally, variable levels of 65 transcription factors (TFs) were identified in rice leaves exposed to high and low nitrogen, covering 22 TF families. These results also indicate that there is a significant difference in the transcriptional regulation mechanisms of rice roots between low and high nitrogen. In summary, our study provides new information for a further understanding of the response of rice roots to low-nitrogen and high-nitrogen conditions.


1958 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
LF Myers ◽  
J Lipsett

The effect of skeleton weed competition on the yield of wheat and oats was investigated in seasons when rainfall was plentiful. Nitrogen was found to be the major factor limiting crop yields. In soils with comparable nitrogen-supplying powers, skeleton weed density governed the crop's response to applied nitrogen. Competition between skeleton weed and crop was severe at low nitrogen levels, but minor at the high nitrogen levels achieved either by nitrogen application, or when the crop followed a legume-rich pasture. Competition had its effect early in the crop's growth. Temporary removal of competition, by spraying with plant growth regulating substances (JICPA) at different times, was used to determine when competition was critical, and measure its effects. Skeleton weed reduced nitrogen supply early in the crop's growth, and so depressed yield. An application of 1 lb MCPA per acre in the fallow 54 days before sowing, or 10 days after crop emergence, increased the yield of oats from 710 to 1350 lb grain per acre: a response equal to that from 32 lb nitrogen per acre applied at planting in the same experiment. In each case, the response to spraying at the different times was analogous to the effect of a nitrogen application at these times. Early spraying gave responses in yield; later spraying gave responses in grain nitrogen. The results provide a new estimate of the reduction in crop yield due to skeleton weed.


1975 ◽  
Vol 15 (74) ◽  
pp. 342 ◽  
Author(s):  
GE Robards ◽  
GR Pearce

Three feeding experiments and a digestibility study are reported in which the effects of supplementing low nitrogen roughages with roughages of high nitrogen content were studied. In each feeding experiment the effect of varying the frequency of supplementation was examined. During the first experiment intake of lucerne hay was greater (P < 0.05) than the intake of oaten hay and higher wool growth rates and liveweight changes were recorded. When the oaten and lucerne hays were alternated at intervals of one, two, three or four days, the average intake and rate of liveweight change was intermediate between the two previous levels, but the rate of wool production was similar to when lucerne hay was offered alone. There were no differences in total intake, clean wool production or liveweight change due to the frequency with which the two rations were alternated. The second experiment involved the feeding of a fixed quantity of lucerne hay with a. five times as much oaten hay or b. ad libitum oaten hay. The lucerne hay was given daily and every second, fourth and eighth days, and there was an unsupplemented control group. During the restricted feeding period frequent supplementation resulted in higher liveweight gain but there was no effect on wool growth. When oaten hay was provided ad libitum the poor response to supplementation and the large variation in intake within groups resulted in no significant differences in wool production or liveweight change between groups. The results of the third experiment indicate that the digestibility or degree of lignification of the basal ration affects the likelihood of a response to supplementation. It was shown that frequent supplementation of pasture hay resulted in higher intake, liveweight and wool production. On the other hand, substitute feeding with little change in animal production occurred when lucerne hay was offered to similar sheep consuming a basal ration of oaten hay which had a higher level of fibre and a lower in vitro digestibility than the pasture hay.


2020 ◽  
pp. 002199832098112
Author(s):  
Akrity Anand ◽  
Mitun Das ◽  
Biswanath Kundu ◽  
Vamsi Krishna Balla ◽  
Subhadip Bodhak ◽  
...  

Ti6Al4V alloy composite coatings in-situ reinforced with TiB-TiN were deposited on Ti substrate using plasma spraying. Influence of plasma power (50 and 60 kW) and deposition speed (40 and 50 mm/s) on coating microstructure and bio-tribocorrosion performance was analyzed. Process parameters found to have strong influence on the tribocorrosion behavior and the material loss/damage of these coatings was found to be significantly less than that of Ti substrate. However, corrosion played a dominant role in affecting the wear and overall damage of all materials. Present in-situ composite coatings reinforced TiB-TiN exhibited superior tribocorrosion resistance than Ti substrate as a result of their high hardness and non-passivating nature.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Nidhi Gupta ◽  
Atul K. Gupta ◽  
Vikram S. Gaur ◽  
Anil Kumar

Nitrogen responsiveness of three-finger millet genotypes (differing in their seed coat colour) PRM-1 (brown), PRM-701 (golden), and PRM-801 (white) grown under different nitrogen doses was determined by analyzing the growth, yield parameters and activities of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase; GOGAT, and glutamate dehydrogenase (GDH) at different developmental stages. High nitrogen use efficiency and nitrogen utilization efficiency were observed in PRM-1 genotype, whereas high nitrogen uptake efficiency was observed in PRM-801 genotype. At grain filling nitrogen uptake efficiency in PRM-1 negatively correlated with NR, GS, GOGAT activities whereas it was positively correlated in PRM-701 and PRM-801, however, GDH showed a negative correlation. Growth and yield parameters indicated that PRM-1 responds well at high nitrogen conditions while PRM-701 and PRM-801 respond well at normal and low nitrogen conditions respectively. The study indicates that PRM-1 is high nitrogen responsive and has high nitrogen use efficiency, whereas golden PRM-701 and white PRM-801 are low nitrogen responsive genotypes and have low nitrogen use efficiency. However, the crude grain protein content was higher in PRM-801 genotype followed by PRM-701 and PRM-1, indicating negative correlation of nitrogen use efficiency with source to sink relationship in terms of seed protein content.


Sign in / Sign up

Export Citation Format

Share Document