scholarly journals Effect of Flushing Milk and Acidic Whey on pH and Nitrogen Loss of Cattle Manure Slurry

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1222
Author(s):  
Thomas Sepperer ◽  
Alexander Petutschnigg ◽  
Konrad Steiner

With the increasing demand for food worldwide, the use of fertilizers in the agricultural industry has grown. Natural fertilizers derived from the use of animal manure slurry, especially cattle and cow, are responsible for 40% of the agricultural ammonia emission. The EU defined the goal to reduce NH3 emission drastically until 2030, yet until today an overall increase has been observed, making it more difficult to reach the target. In this study, we used two by-products from the dairy industry, namely flushing milk and acidic whey, to lower the pH of cattle manure slurry and therefore mitigate the loss of nitrogen in the form of ammonia into the atmosphere, making it available in the soil. Measurements of pH, ammonium nitrogen, total Kjeldahl nitrogen, and lactic acid bacteria colonies were conducted in a lab-scale experiment to test the hypothesis. Afterwards, pH measurements were conducted on bigger samples. We found that whey effectively reduced the pH of manure below 5, therefore moving the ammonia/ammonium equilibrium strongly towards ammonium. Flushing milk on the other hand lowered the pH to a smaller extent, yet allowed for faster hydrolysis of urea into ammonium. The findings in this study present a suitable and environmentally friendly approach to help reach the climate goals set by the EU by using by-products from the same industry branch, therefore being a suitable example of circular economy.

2020 ◽  
Author(s):  
◽  
Johanna Pedersen

The agricultural sector contributes substantially to global pollution, as it accounts for a significant amount gaseous emission of ammonia (NH3), greenhouse gases, volatile organic ompounds (VOC), and hydrogen sulfide (H2S). Agriculture accounts for 75% of the global NH3 emission with the primary sources being production units for livestock, storage facilities and land application of animal manure. Regardless of continuously updated legislation and regulations, Denmark does not meet the targeted NH3 reduction agreed upon in the National Emission Ceilings Directive from the European Union. Field application of liquid animal manure (slurry) accounts for 28% of the NH3 emissions in Denmark. For decades research has been carried out in order to mitigate these emissions. Several factors affect the emission, such as soil, slurry, and crop type and conditions, meteorological conditions, and application method and rate. Furthermore, all of the parameters interact with each other, making it difficult to isolate and quantify singular effects. Different strategies are applied in order to mitigate emissions, including manure reatment prior to application, optimal field management (crop rotation allowing direct soil injection), timing of application, and low emission application techniques. In growing cereal crops most low emission application techniques apply slurry at the surface in bands. Although extensive research has been carried out, there is still a knowledge gap concerning the interaction effects. There is a need for a high precision measurement method that can quantify NH3 emission patterns and relatively small differences in cumulative emission in order to document the effects. The research in this Ph.D. thesis examines the mechanisms that have an impact on NH3 emission from surface applied manure in growing crops in order to investigate which circumstances will lead to successful or unsuccessful abatement using both well known and new application techniques. For this purpose, a system of dynamic chambers and online measurements of NH3 flux with Cavity Ring-Down Spectroscopy was developed. A series of field experiments were conducted with this system under a large variety of conditions. The measuring system allow for NH3 flux measurements with a low variation, high time resolution, and long measuring periods. In addition, a new method for quantification of the exposed surface area (ESA) of the slurry at the soil surface over time has been developed. It is demonstrated that the method can be used to gain further knowledge about the slurry-soil interaction after surface application of slurry. The results presented show that the interaction between soil type and application technique is important when assessing the low emission application techniques in terms of their success in reducing emission. Measurements of ESA proved useful as an explanatory variable to explain why different slurry treatments mitigate the emission under certain circumstances but not under other. The ESA results also highlights the importance of gaining further knowledge about slurry infiltration into the soil after application and haracterization of increased dry matter in the air-slurry boundary layer including quantification of a possible crust formation. Air temperature is known to have an important effect on NH3 emission. Analysis of data from 19 experiments reveals a positive response of cumulative NH3 emission to the emperature at application up to a temperature of approximately 14°C. After this, a further increase in temperature does not change the cumulative NH3 emissions. It is hypothesized that the absence of temperature effect over a certain point is caused by an increased resistance of NH3 transport due to increased dry matter at the slurry-air interface. When combining a Proton Transfer Reaction Time-of-Flight Mass Spectrometer with the dynamic chambers, it is possible to measure, identify, and quantify emissions of non-methane VOC and H2S after field application of manure. The system allows for precise measurements of the emission dynamics over time and estimations of the odor activity value.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 581 ◽  
Author(s):  
Thomas Sepperer ◽  
Gianluca Tondi ◽  
Alexander Petutschnigg ◽  
Timothy M. Young ◽  
Konrad Steiner

With the extensive use of nitrogen-based fertilizer in agriculture, ammonia emissions, especially from cattle manure, are a serious environmental threat for soil and air. The European community committed to reduce the ammonia emissions by 30% by the year 2030 compared to 2005. After a moderate initial reduction, the last report showed no further improvements in the last four years, keeping the 30% reduction a very challenging target for the next decade. In this study, the mitigation effect of different types of tannin and tannin-based adsorbent on the ammonia emission from manure was investigated. Firstly, we conducted a template study monitoring the ammonia emissions registered by addition of the tannin-based powders to a 0.1% ammonia solution and then we repeated the experiments with ready-to-spread farm-made manure slurry. The results showed that all tannin-based powders induced sensible reduction of pH and ammonia emitted. Reductions higher than 75% and 95% were registered for ammonia solution and cattle slurry, respectively, when using flavonoid-based powders. These findings are very promising considering that tannins and their derivatives will be extensively available due to the increasing interest on their exploitation for the synthesis of new-generation “green” materials.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 472
Author(s):  
Qianqian Ma ◽  
Yanli Li ◽  
Jianming Xue ◽  
Dengmiao Cheng ◽  
Zhaojun Li

Here, we investigated the impact of different turning frequency (TF) on dynamic changes of N fractions, NH3 emission and bacterial/archaeal community during chicken manure composting. Compared to higher TF (i.e., turning every 1 or 3 days in CMS1 or CMS3 treatments, respectively), lower TF (i.e., turning every 5 or 7 days in CMS5 or CMS7 treatments, respectively) decreased NH3 emission by 11.42–18.95%. Compared with CMS1, CMS3 and CMS7 treatments, the total nitrogen loss of CMS5 decreased by 38.03%, 17.06% and 24.76%, respectively. Ammonia oxidizing bacterial/archaeal (AOB/AOA) communities analysis revealed that the relative abundance of Nitrosospira and Nitrososphaera was higher in lower TF treatment during the thermophilic and cooling stages, which could contribute to the reduction of NH3 emission. Thus, different TF had a great influence on NH3 emission and microbial community during composting. It is practically feasible to increase the abundance of AOB/AOA through adjusting TF and reduce NH3 emission the loss of nitrogen during chicken manure composting.


2021 ◽  
Vol 13 (4) ◽  
pp. 2197
Author(s):  
Seongmin Kang ◽  
Joonyoung Roh ◽  
Eui-chan Jeon

NH3 is one of the major substances contributing to the secondary generation of PM2.5; therefore, management is required. In Korea, the management of NH3 is insufficient, and the emission factor used by EPA is the same as the one used when calculating emissions. In particular, waste incineration facilities do not currently calculate NH3 emissions. In the case of combustion facilities, the main ammonia emission source is the De-NOx facility, and, in the case of a power plant with a De-NOx facility, NH3 emission is calculated. Therefore, in the case of a Municipal Solid Waste (MSW) incinerator with the same facility installed, it is necessary to calculate NH3 emissions. In this study, the necessity of developing NH3 emission factors for an MSW incinerator and calculating emission was analyzed. In addition, elements to be considered when developing emission factors were analyzed. The study found that the NH3 emission factors for each MSW incinerator technology were calculated as Stoker 0.010 NH3 kg/ton and Fluidized Beds 0.004 NH3 kg/ton, which was greater than the NH3 emission factor 0.003 NH3 kg/ton for the MSW incinerator presented in EMEP/EEA (2016). As a result, it was able to identify the need for the development of NH3 emission factors in MSW incinerators in Korea. In addition, the statistical analysis of the difference between the incineration technology of MSW and the NH3 emission factor by the De-NOx facility showed a difference in terms of both incineration technology and De-NOx facilities, indicating that they should be considered together when developing the emission factor. In addition to MSW, it is believed that it will be necessary to review the development of emission factors for waste at workplaces and incineration facilities of sewage sludge.


2014 ◽  
Vol 608 ◽  
pp. 62-67
Author(s):  
Karin Kandananond

Although the manufacturing businesses have played an important role in generating the highest GDP for Thailand, they also emit more greenhouse gas (GHG) than other sectors. Due to the cap and trade scheme by European Union (EU), the carbon footprint is the GHG emitted by products, organization or persons and it has to be tracked and recorded. Since the ceramic production process also has a major contribution on the emission, its carbon footprint is a piece of product information which cannot be ignored. In this research, the carbon footprint for the whole life cycle of a local ceramic product was recorded and calculated. It is interesting to note that the resource extraction stage has contributed to the highest emission followed by the product use, manufacturing, disposal and distribution. The results from this research are useful for local ceramic manufacturers who want to export their products to the EU countries and it is also important for the customers who are concerned about the environment.


2013 ◽  
Vol 7 (1) ◽  
pp. 106-118

The formation of Disinfection By-Products (DBPs) in drinking water results from the reaction of chlorine or other disinfectants added to the water with naturally occurring organic materials, and has raised concerns during the last decades because these compounds are harmful for human health. During the present work, the formation of different categories of DBPs was investigated in four water treatment plants (WTP) using chlorine as disinfectant, and in selected points of the distribution network of Athens, Greece, which is supplied from these four WTP, during a period of ten years. The concentrations of DBPs were generally low and the annual mean concentrations always well below the regulatory limit of the European Union (EU) for the total trihalomethanes (TTHMs). The haloacetic acids (HAAs) have not been regulated in the EU, but during this investigation they often occurred in significant levels, sometimes exceeding the levels of TTHMs, which highlights the importance of their monitoring in drinking water. Apart from THMs and HAAs, several other DBPs species were detected at much lower concentrations in the chlorinated waters: chloral hydrate, haloketones and, in a limited number of cases, haloacetonitriles.


AGROFOR ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Maarit HELLSTEDT ◽  
Hannu E.S. HAAPALA

Agriculture is the most significant source of Ammonia emission that causes e.g. loss of Nitrogen from agricultural systems. Manure is the main source of Ammonia emissions and causes losses in the nutrient cycles of agriculture as well as local odour nuisance. By using different bedding materials, it is possible to reduce both the Ammonia emissions and to improve the cycling of nutrient. Peat is known as an effective litter material but its use as a virtually non-renewable resource is questionable. Therefore, we need to find new bedding materials to replace peat. In this study, the effect of ten different industrial by-products, reeds and stalks to reduce Ammonia emissions was tested in laboratory in January 2020. Dairy cow slurry and bedding materials were mixed in a volume ratio of 4:1. The Ammonia emission was measured for two weeks once or twice a day. Measurements were performed with a photoacoustic method. The results show that all tested materials reduce the Ammonia emission from the cow slurry used. Interesting new materials to substitute peat are zero fiber and briquetted textile waste. Wheat bran, pellets made of reed canary grass and chopped bulrush had the best effect which is at the same level as that of peat. However, no statistically significant differences between the calculated emission rates were found.


2019 ◽  
Vol 19 (8) ◽  
pp. 5605-5613 ◽  
Author(s):  
Zhenying Xu ◽  
Mingxu Liu ◽  
Minsi Zhang ◽  
Yu Song ◽  
Shuxiao Wang ◽  
...  

Abstract. Although nitrogen oxide (NOx) emission controls have been implemented for several years, northern China is still facing high particulate nitrate (NO3-) pollution during severe haze events in winter. In this study, the thermodynamic equilibrium model (ISORROPIA-II) and the Weather Research and Forecast model coupled with chemistry (WRF-Chem) were used to study the efficiency of NH3 emission controls on alleviating particulate NO3- during a severe winter haze episode. We found that particulate-NO3- formation is almost NH3-limited in extremely high pollution but HNO3-limited on the other days. The improvements in manure management of livestock husbandry could reduce 40 % of total NH3 emissions (currently 100 kt month−1) in northern China in winter. Consequently, particulate NO3- was reduced by approximately 40 % (on average from 40.8 to 25.7 µg m−3). Our results indicate that reducing livestock NH3 emissions would be highly effective in reducing particulate NO3- during severe winter haze events.


Author(s):  
Luciano B. Mendes ◽  
Ilda F. F. Tinoco ◽  
Nico W. M. Ogink ◽  
Keller S. O. Rocha ◽  
Jairo A. Osorio S. ◽  
...  

This study was conducted with the aim of monitoring NH3 emissions from a mechanically and a naturally ventilated broiler house (MVB and NVB, respectively) and calculate their ammonia emission factors (fNH3). Bird stocking density was 13.5 and 11.1 birds m-2 for the MVB and NVB, respectively. The marketing age was 43 days and bedding consisted of dried coffee husks in its first time of use. Ventilation rates were calculated with the metabolic carbon dioxide mass balance method. Values of fNH3 were 0.32 ± 0.10 and 0.27 ± 0.07 g bird-1 d-1 for the MVB and NVB, respectively, and are in agreement to what was presented in other studies performed under similar conditions. The fNH3 estimated on yearly basis was 58 g bird-place-1 year-1. It was concluded that the different types of ventilation system between the studied broiler barns did not significantly affect emissions in the modeling process. The results obtained help providing reliable methodology for the determination of a solid database on NH3 emission factors for tropical conditions that can be used for future inventories, when performed in a sufficient number of barns that is representative for the Brazilian scenario.


Sign in / Sign up

Export Citation Format

Share Document