gpd1 gene
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Haihua Lin ◽  
Youhong Fang ◽  
Lin Han ◽  
Jie Chen ◽  
Jingan Lou ◽  
...  

Transient infantile hypertriglyceridemia is a rare autosomal recessive disorder characterized by hypertriglyceridemia, hypohepatia, hepatomegaly, hepatic steatosis and fibrosis in infancy. Mutations in GPD1 gene are considered the causative factor but the underlying mechanism of this disorder is still enigmatic. To date, only 24 different GPD1 mutations have been reported in the literature worldwide with transient infantile hypertriglyceridemia or relevant conditions. Here we report a Chinese girl who developed hepatomegaly hepatic steatosis, elevated transaminase and hypertriglyceridemia from the age of 4 months. A novel homozygous variant c.454C>T (p.Q152*) was found in GPD1 gene by next-generation sequencing. This patient is the 3rd Asian reported with transient infantile hypertriglyceridemia. We summarized the clinical presentations of transient infantile hypertriglyceridemia and also expanded the spectrum of disease-causing mutations in GPD1.


2017 ◽  
Vol 173 (12) ◽  
pp. 3189-3194 ◽  
Author(s):  
Niu Li ◽  
Guoying Chang ◽  
Yufei Xu ◽  
Yu Ding ◽  
Guoqiang Li ◽  
...  

2017 ◽  
Vol 64 (2) ◽  
Author(s):  
Anna Goncerzewicz ◽  
Karolina Kamińska-Wojteczek ◽  
Izabella Młynarczyk ◽  
Anna Misiewicz

In this study we determined the influence of different sugar concentration in media, time of rehydration and type of strain on relative expression level of GPD1 and SIP18 genes of active dry cider-making yeast strains, followed by the assessment of the impact of rehydration on the fermentation process. High expression of SIP18 at the beginning of rehydration was shown to be due to high transcription of the gene during the drying process. High sugar concentrations of media initiated transcription of the GPD1 gene and triggered the cellular glycerol biosynthesis pathway in examined strains. Rehydration time and type of strain showed to have no statistically significant impact on the course of the fermentation; RT qPCR results depended mainly on the time of rehydration and sugar concentration of the medium. This is the first attempt to confront rehydration time and molecular mechanisms acting upon rehydration with the course of the fermentation process.


2014 ◽  
Vol 41 (1) ◽  
pp. 87 ◽  
Author(s):  
Ahmed Bahieldin ◽  
Jamal S. M. Sabir ◽  
Ahmed Ramadan ◽  
Ahmed M. Alzohairy ◽  
Rania A. Younis ◽  
...  

Loss-of-function and gain-of-function approaches were utilised to detect the physiological importance of glycerol biosynthesis during salt stress and the role of glycerol in conferring salt tolerance in Arabidopsis. The salt stress experiment involved wild type (WT) and transgenic Arabidopsis overexpressing the yeast GPD1 gene (analogue of Arabidopsis GLY1 gene). The experiment also involved the Arabidopsis T-DNA insertion mutants gly1 (for suppression of glycerol 3-phosphate dehydrogenase or G3PDH), gli1 (for suppression of glycerol kinase or GK), and act1 (for suppression of G3P acyltransferase or GPAT). We evaluated salt tolerance levels, in conjunction with glycerol and glycerol 3-phosphate (G3P) levels and activities of six enzymes (G3PDH, ADH (alcohol dehydrogenase), ALDH (aldehyde dehydrogenase), GK, G3PP (G3P phosphatase) and GLYDH (glycerol dehydrogenase)) involved in the glycerol pathway. The GPD1 gene was used to overexpress G3PDH, a cytosolic NAD+-dependent key enzyme of cellular glycerol biosynthesis essential for growth of cells under abiotic stresses. T2 GPD1-transgenic plants and those of the two mutants gli1 and act1 showed enhanced salt tolerance during different growth stages as compared with the WT and gly1 mutant plants. These results indicate that the participation of glycerol, rather than G3P, in salt tolerance in Arabidopsis. The results also indicate that the gradual increase in glycerol levels in T2 GPD1-transgenic, and gli1 and act1 mutant plants as NaCl level increases whereas they dropped at 200 mM NaCl. However, the activities of the G3PDH, GK, G3PP and GLYDH at 150 and 200 mM NaCl were not significantly different. We hypothesise that mechanism(s) of glycerol retention/efflux in the cell are affected at 200 mM NaCl in Arabidopsis.


2010 ◽  
Vol 38 (3) ◽  
pp. 1875-1881 ◽  
Author(s):  
Y. Z. Gao ◽  
Y. Jiang ◽  
X. Wu ◽  
C. Y. Bai ◽  
Y. C. Pan ◽  
...  

Microbiology ◽  
1999 ◽  
Vol 145 (3) ◽  
pp. 715-727 ◽  
Author(s):  
Martijn Rep ◽  
Jacobus Albertyn ◽  
Johan M. Thevelein ◽  
Bernard A. Prior ◽  
Stefan Hohmann

1997 ◽  
Vol 138 (5) ◽  
pp. 961-974 ◽  
Author(s):  
Jennifer Philips ◽  
Ira Herskowitz

Successful zygote formation during yeast mating requires cell fusion of the two haploid mating partners. To ensure that cells do not lyse as they remodel their cell wall, the fusion event is both temporally and spatially regulated: the cell wall is degraded only after cell–cell contact and only in the region of cell–cell contact. To understand how cell fusion is regulated, we identified mutants defective in cell fusion based upon their defect in mating to a fus1 fus2 strain (Chenevert, J., N. Valtz, and I. Herskowitz. 1994. Genetics 136:1287–1297). Two of these cell fusion mutants are defective in the FPS1 gene, which codes for a glycerol facilitator (Luyten, K., J. Albertyn, W.F. Skibbe, B.A. Prior, J. Ramos, J.M. Thevelein, and S. Hohmann. 1995. EMBO [Eur. Mol. Biol. Organ.] J. 14:1360–1371). To determine whether inability to maintain osmotic balance accounts for the defect in cell fusion in these mutants, we analyzed the behavior of an fps1Δ mutant with reduced intracellular glycerol levels because of a defect in the glycerol-3-phosphate dehydrogenase (GPD1) gene (Albertyn, J., S. Hohmann, J.M. Thevelein, and B.A. Prior. 1994. Mol. Cell. Biol. 14:4135– 4144): deletion of GPD1 partially suppressed the cell fusion defect of fps1 mutants. In contrast, overexpression of GPD1 exacerbated the defect. The fusion defect could also be partially suppressed by 1 M sorbitol. These observations indicate that the fusion defect of fps1 mutants results from inability to regulate osmotic balance and provide evidence that the osmotic state of the cell can regulate fusion. We have also observed that mutants expressing hyperactive protein kinase C exhibit a cell fusion defect similar to that of fps1 mutants. We propose that Pkc1p regulates cell fusion in response to osmotic disequilibrium. Unlike fps1 mutants, fus1 and fus2 mutants are not influenced by expression of GPD1 or by 1 M sorbitol. Their fusion defect is thus unlikely to result from altered osmotic balance.


Sign in / Sign up

Export Citation Format

Share Document