scholarly journals The magnetic circuit dynamics of a magnetorheological valve with a permanent magnet

2020 ◽  
Vol 322 ◽  
pp. 01049
Author(s):  
Michal Kubík ◽  
Filip Jeniš ◽  
Igor Hašlík

The magnetorheological (MR) damper uses magnetorheological fluid which, when subjected to magnetic stimuli, generates an increase of damping forces. A significant problem of these dampers is their poor failsafe ability due to power supply interruption. In the case of faults, the damper remains in a low damping state, which is dangerous. This problem can be solved by accommodating a permanent magnet in the magnetic circuit of the damper. However, the magnetic circuit dynamic of this type of damper has rarely been studied. The main aim of this paper is to introduce the magnetic circuit dynamics of the magnetorheological damper/control valve with a permanent magnet. Firstly, the design of the magnetorheological valve with NdFe42 permanent magnet in the magnetic circuit is introduced. The response time of the magnetic field on the unit step of the control signal was calculated by transient magnetic simulation in Ansys Electronics software. The response time of the magnetic field was simulated in the range of 1.2 to 5 ms depending on the electric current magnitude and orientation. The presented MR damper was manufactured and tested. The experiments prove that the permanent magnet significantly affects the dynamics of the magnetic circuit.

2018 ◽  
Vol 153 ◽  
pp. 06002 ◽  
Author(s):  
Kubík Michal ◽  
Macháček Ondřej ◽  
Strecker Zbyněk ◽  
Roupec Jakub ◽  
Novák Petr ◽  
...  

The present paper deals with the transient magnetic model of the magnetorheological (MR) damper and its experimental verification. The response time of MR damper affects the quality of semi-active control of this damper. The lower the response time, the higher the system efficiency. The most important part of the response time of the MR damper is the response time of magnetic field of the MR damper which can be determined by transient magnetic model. The transient magnetic model was created by the software Ansys Electromagnetics 17.1 as 2D axisymmetric and verified by measurement of magnetic field in the gap of MR damper piston. The maximum difference between the model and the experiment was 28 %. The response time depends on the electric current in the coil of MR damper. The transient magnetic model was used for determination of influence of MR fluid type, material of cover and material of magnetic circuit on the response time of magnetic field of MR damper. The type of MR fluid has a significant influence on the response time. The lower the mass concentration of ferromagnetic particles, the lower the response time of magnetic field. A material selection of magnetic circuit is always a trade-off between the response time and the maximum magnetic flux density (dynamic force range) in the gap of the MR damper. According to the verified transient magnetic model, it is possible to find a suitable material of magnetic circuit for specific application (response time).


2013 ◽  
Vol 543 ◽  
pp. 487-490 ◽  
Author(s):  
Izyan Iryani Mohd Yazid ◽  
Saiful Amri Mazlan ◽  
Hairi Zamzuri ◽  
M.J. Mughni ◽  
S. Chuprat

This paper presents a simulation study of electromagnetic circuit design for a mixed mode Magnetorheological (MR) damper. The magnetic field generated by electromagnetic circuit of the MR damper was simulated using Finite Element Method Magnetics (FEMM) software package. All aspects of geometry parameters were considered and adjusted efficiently in order to obtain the best MR damper performance. Eventually, six different parameters approach were proposed; the selection of materials, the polarity of coils, the diameter of piston, piston rod and core, the shear and squeeze gaps clearance, the piston pole length and the thickness of housing.


2011 ◽  
Vol 52-54 ◽  
pp. 285-290
Author(s):  
Yi Chang Wu ◽  
Feng Ming Ou ◽  
Bo Wei Lin

The prediction of the magnetic field is a prerequisite to investigate the motor performance. This paper focuses on the magnetic field estimation of surface-mounted permanent-magnet (SMPM) motors based on two approximations, i.e., the magnetic circuit analysis and the finite-element analysis (FEA). An equivalent magnetic circuit model is applied to analytically evaluate the magnetic field of a SMPM motor with exterior-rotor configuration. The two-dimensional FEA is then applied to numerically calculate the magnetic field and to verify the validity of the magnetic circuit model. The results show that the errors between the analytical predictions and FEA results are less than 6%. It is of benefit to further design purposes and optimization of SMPM motors.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 2026
Author(s):  
Ke Sun ◽  
Jianwen Shi ◽  
Wei Cui ◽  
Guoying Meng

Permanent magnet coupling is extensively studied owing to its economic efficiency and stability. In this study, a computational model for cylindrical permanent magnet coupling (CPMC) was designed using the magnetic field division method to divide an air gap magnetic field. An equivalent magnetic circuit model was also designed based on the equivalent magnetic circuit method. The novelty of this study is that both the skin effect and the working point of the permanent magnet are taken into consideration to obtain the magnetic circuit and induce eddy current characteristics of permanent magnet coupling. Furthermore, a computational model was obtained for the transmission torque of the CPMC based on the principles of Faraday’s and Ampere’s laws. Additionally, the accuracy of the model was verified using a finite element simulation model and a test bench.


2010 ◽  
Vol 97-101 ◽  
pp. 2622-2627
Author(s):  
Hong Guang Jiao ◽  
Peng Liu ◽  
Zhan Xu Tie

To solve the conflict between separation space and magnetic field intensity, an original magnetic circuit structure system of permanent magnet magnetic filter is designed by utilizing multi-dimensional magnet extrusion technologies, with multi-block NdFeB magnets of different structures and magnetization directions. The inside diameter of the ring magnets and ring soft iron is taken as separating space. To inspect the distribution of the magnetic field characteristics of magnetic circuit system, mathematical model is established, and the designed magnetic circuit system is simulated, taking advantage of the electromagnetic software Magnet. The simulation results show that a larger separating space and higher background magnetic density can be achieved simultaneously by means of the organic magnetic circuit system design, when the thickness of ring soft iron is 4mm and the diameter ratio (outside diameter to the diameter) of ring magnets is 10/3. The highest magnetic induction intensity of 29.2 mm separating space is 1.5T, which provides the basis for permanent magnet magnetic circuit design.


2014 ◽  
Vol 663 ◽  
pp. 685-689 ◽  
Author(s):  
Fitrian Imaduddin ◽  
Saiful Amri Mazlan ◽  
Hairi Zamzuri ◽  
Mohd Azizi Abdul Rahman

A novel concept of bypass rotary Magneto-rheological (MR) damper is studied in the automotive suspension application. The proposed design is developed based on a vane-type damper structure with an MR control valve located outside of the damper. The design is intended to enhance the ease of maintenance and to reduce the thermal effect from the coil to the MR fluid. The valve is the key component of the damper that exploits the advance characteristics of MR fluid in which have sensitive rheological properties to magnetic field. The ability of the valve to modify the strength of magnetic field has given an advantage that the valve can be operated without any moving parts. The elimination of these parts in the throttling mechanism of the valve will provide benefit in terms of product lifetime and responsiveness. The main objective of this paper is to elaborate the advantages of the bypass rotary MR damper and to demonstrate the damper performance through force-velocity characteristics. The analytical model of the damper is developed and used in the determination of the force-velocity curves and the equivalent damping coefficients.


2020 ◽  
Vol 32 (5) ◽  
pp. 977-983
Author(s):  
Jumpei Kawasaki ◽  
Yuki Nakamura ◽  
Yasukazu Sato ◽  
◽  

Generally, the magnetic field applied to a magnetorheological fluid (MRF) is generated by electromagnets. Electromagnets consume electric power during MRF magnetization, which is an issue. In this study, we examine two kinds of magnetizing mechanism using a permanent magnet, instead of electromagnets, to save electric power and generate a magnetic field on the MRF. One mechanism linearly moves the permanent magnet into the magnetic circuit composed of yokes. The magnetic field intensity on the MRF is then controlled by changing the overlap between the magnet and the yokes. The other mechanism rotates a permanent magnet in the magnetic circuit. The magnetic field intensity on the MRF is then controlled by changing the relative angular position between the magnet and the yokes. These two mechanisms normally generate force or torque on the magnet toward a magnetically stable position concerning the magnet, and the force or torque causes power consumption to hold and move the magnet. We design herein special magnetic circuits and a cancelation mechanism for the force or torque that drastically reduce the power consumption during the MRF magnetization compared with an electromagnet-type magnetizing device.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2792
Author(s):  
Wieslaw Lyskawinski ◽  
Wojciech Szelag ◽  
Cezary Jedryczka ◽  
Tomasz Tolinski

The paper presents research on magnetic field exciters dedicated to testing magnetocaloric materials (MCMs) as well as used in the design process of magnetic refrigeration systems. An important element of the proposed test stand is the system of magnetic field excitation. It should provide a homogeneous magnetic field with a controllable value of its intensity in the MCM testing region. Several concepts of a magnetic circuit when designing the field exciters have been proposed and evaluated. In the MCM testing region of the proposed exciters, the magnetic field is controlled by changing the structure of the magnetic circuit. A precise 3D field model of electromagnetic phenomena has been developed in the professional finite element method (FEM) package and used to design and analyze the exciters. The obtained results of the calculations of the magnetic field distribution in the working area were compared with the results of the measurements carried out on the exciter prototype. The conclusions resulting from the conducted research are presented and discussed.


2013 ◽  
Vol 753-755 ◽  
pp. 1571-1575
Author(s):  
Zhi Hua Liu ◽  
Yu Feng Huang ◽  
Jian Peng Li ◽  
Xin Wei Xu

Magnetic bead droplet's non-contacted manipulation can be realized in Electromagnetic MEMS, but how to achieve magnetic beads manipulation is the major problem. A new method of multi-layered flat coils coupled with permanent magnet was proposed. Firstly, the theory of magnetic bead manipulation was analyzed and the main factors affected the magnetic beads manipulation was identified; then the magnetic field of multi-layered flat coils and Stokes viscous resistance of magnetic beads were analyzed and simulated quantificationally; finally the magnetic bead capture area was got under different flow velocity. Consequently the feasibility and correctness of this method was verified.


Sign in / Sign up

Export Citation Format

Share Document