scholarly journals Temporal variations of net Kuroshio transport based on a repeated hydrographic section along 137°E

2021 ◽  
Author(s):  
Yuma Kawakami ◽  
Atsushi Kojima ◽  
Kiyoshi Murakami ◽  
Toshiya Nakano ◽  
Shusaku Sugimoto

AbstractTemporal variations of net Kuroshio transport are examined for 1972–2018 based on a repeated hydrographic section along 137°E, which is maintained by the Japan Meteorological Agency. The net Kuroshio transport obtained by integration of geostrophic current velocity relative to 1000 dbar depth fluctuates on inter-annual and decadal timescales. The predominant timescale of the net Kuroshio transport changes with time; the inter-annual variation is pronounced in 1972–1990 and 2000–2018, and the decadal variation is detected only before 2000. We find that a winter wind stress curl variation in the central North Pacific which reflects meridional movements of the Aleutian Low and intensity fluctuations of the North Pacific subtropical high on an inter-annual timescale and intensity fluctuations of the Aleutian Low on a decadal timescale, causes the net Kuroshio transport variation. In addition to the inter-annual and decadal variations, we further pointed out a bi-decadal-scale variation of the net Kuroshio transport and its possible link to the Aleutian Low intensity fluctuation. Moreover, our results indicate that during large net Kuroshio transport, sea surface temperature around the Kuroshio and Kuroshio Extension region tends to increase, resulting in vigorous upward sensible and latent heat release.

Author(s):  
Fumiaki Kobashi ◽  
Toshiya Nakano ◽  
Naoto Iwasaka ◽  
Tomomichi Ogata

AbstractDecadal-scale variability of the North Pacific subtropical mode water (STMW) and its influence on the pycnocline are examined by analyzing Japan Meteorological Agency (JMA) repeat hydrographic observations along the 137°E meridian from 1972 to 2019, with a particular focus on the summer season when the seasonal upper pycnocline develops above the STMW. The STMW appears between 20° and 32°N at 137°E, with the thickness varying on decadal timescales of approximately 9–15 years. Argo float observations suggest that the observed change in the STMW thickness originates in the wintertime mixed layer south of the Kuroshio Extension in the preceding year. The STMW has a substantial impact on the pycnocline. The presence of thick STMW shoals the upper pycnocline, occasionally concurrent with the deepening of the lower main pycnocline. The change is robust in the upper pycnocline, where the heaving of isopycnal surfaces occurs with density anomalies up near the surface. The subtropical front (STF) at subsurface depths, which is associated with a northward shoaling of the upper pycnocline and is maintained by the STMW in the climatology, also changes on decadal timescales. A thick STMW increases the northward shoaling of the upper pycnocline and intensifies the STF. On decadal timescales, the STF variations are accounted for by the STMW-induced change in the upper pycnocline slope. The change in the STF due to mode waters is consistent with previous findings from numerical models.


2018 ◽  
Vol 31 (7) ◽  
pp. 2771-2796 ◽  
Author(s):  
Adèle Révelard ◽  
Claude Frankignoul ◽  
Young-Oh Kwon

The Generalized Equilibrium Feedback Analysis (GEFA) is used to distinguish the influence of the Oyashio Extension (OE) and the Kuroshio Extension (KE) variability on the atmosphere from 1979 to 2014 from that of the main SST variability modes, using seasonal mean anomalies. Remote SST anomalies are associated with each single oceanic regressor, but the multivariate approach efficiently confines their SST footprints. In autumn [October–December (OND)], the OE meridional shifts are followed by a North Pacific Oscillation (NPO)-like signal. The OE influence is not investigated in winter [December–February (DJF)] because of multicollinearity, but a robust response with a strong signal over the Bering Sea is found in late winter/early spring [February–April (FMA)], a northeastward strengthening of the Aleutian low following a northward OE shift. A robust response to the KE variability is found in autumn, but not in winter and late winter when the KE SST footprint becomes increasingly small and noisy as regressors are added in GEFA. In autumn, a positive PDO is followed by a northward strengthening of the Aleutian low and a southward shift of the storm track in the central Pacific, reflecting the surface heat flux footprint in the central Pacific. In winter, the PDO shifts the maximum baroclinicity and storm track southward, the response strongly tilts westward with height in the North Pacific, and there is a negative NAO-like teleconnection. In late winter, the North Pacific NPO-like response to the PDO interferes negatively with the response to the OE and is only detected when the OE is represented in GEFA. A different PDO influence on the atmospheric circulation is found from 1958 to 1977.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Youngji Joh ◽  
Emanuele Di Lorenzo

Abstract The Kuroshio Extension (KE) exhibits prominent decadal fluctuations that enhance the low-frequency variability of North Pacific climate. Using available observations, we show evidence that a preferred decadal timescale in the KE emerges from the interaction between KE and the central tropical Pacific via Meridional Modes. Specifically, we show that changes in the KE states apply a persistent downstream atmospheric response (e.g. wind stress curl, 0–12 months timescales) that projects on the atmospheric forcing of the Pacific Meridional Modes (PMM) over 9 months timescales. Subsequently, the PMM energizes the central tropical Pacific El Niño Southern Oscillation (CP-ENSO) and its atmospheric teleconnections back to the Northern Hemisphere (1–3 months timescale), which in turn excites oceanic Rossby waves in the central/eastern North Pacific that propagate westward changing the KE (~3 years timescales). Consistent with this hypothesis, the cross-correlation function between the KE and the PMM/CP-ENSO indices exhibits a significant sinusoidal shape corresponding to a preferred spectral power at decadal timescales (~10 years). This dynamics pathway (KE→PMM/CP-ENSO→KE) may provide a new mechanistic basis to explain the preferred decadal-timescale of the North Pacific and enhance decadal predictability of Pacific climate.


2009 ◽  
Vol 22 (12) ◽  
pp. 3177-3192 ◽  
Author(s):  
Terrence M. Joyce ◽  
Young-Oh Kwon ◽  
Lisan Yu

Abstract Coherent, large-scale shifts in the paths of the Gulf Stream (GS) and the Kuroshio Extension (KE) occur on interannual to decadal time scales. Attention has usually been drawn to causes for these shifts in the overlying atmosphere, with some built-in delay of up to a few years resulting from propagation of wind-forced variability within the ocean. However, these shifts in the latitudes of separated western boundary currents can cause substantial changes in SST, which may influence the synoptic atmospheric variability with little or no time delay. Various measures of wintertime atmospheric variability in the synoptic band (2–8 days) are examined using a relatively new dataset for air–sea exchange [Objectively Analyzed Air–Sea Fluxes (OAFlux)] and subsurface temperature indices of the Gulf Stream and Kuroshio path that are insulated from direct air–sea exchange, and therefore are preferable to SST. Significant changes are found in the atmospheric variability following changes in the paths of these currents, sometimes in a local fashion such as meridional shifts in measures of local storm tracks, and sometimes in nonlocal, broad regions coincident with and downstream of the oceanic forcing. Differences between the North Pacific (KE) and North Atlantic (GS) may be partly related to the more zonal orientation of the KE and the stronger SST signals of the GS, but could also be due to differences in mean storm-track characteristics over the North Pacific and North Atlantic.


2009 ◽  
Vol 39 (6) ◽  
pp. 1317-1339 ◽  
Author(s):  
Robert S. Pickart ◽  
Alison M. Macdonald ◽  
G. W. K. Moore ◽  
Ian A. Renfrew ◽  
John E. Walsh ◽  
...  

Abstract The seasonal change in the development of Aleutian low pressure systems from early fall to early winter is analyzed using a combination of meteorological reanalysis fields, satellite sea surface temperature (SST) data, and satellite wind data. The time period of the study is September–December 2002, although results are shown to be representative of the long-term climatology. Characteristics of the storms were documented as they progressed across the North Pacific, including their path, central pressure, deepening rate, and speed of translation. Clear patterns emerged. Storms tended to deepen in two distinct geographical locations—the Gulf of Alaska in early fall and the western North Pacific in late fall. In the Gulf of Alaska, a quasi-permanent “notch” in the SST distribution is argued to be of significance. The signature of the notch is imprinted in the atmosphere, resulting in a region of enhanced cyclonic potential vorticity in the lower troposphere that is conducive for storm development. Later in the season, as winter approaches and the Sea of Okhotsk becomes partially ice covered and cold, the air emanating from the Asian continent leads to enhanced baroclinicity in the region south of Kamchatka. This corresponds to enhanced storm cyclogenesis in that region. Consequently, there is a seasonal westward migration of the dominant lobe of the Aleutian low. The impact of the wind stress curl pattern resulting from these two regions of storm development on the oceanic circulation is investigated using historical hydrography. It is argued that the seasonal bimodal input of cyclonic vorticity from the wind may be partly responsible for the two distinct North Pacific subarctic gyres.


2007 ◽  
Vol 20 (8) ◽  
pp. 1523-1538 ◽  
Author(s):  
Xiaojie Zhu ◽  
Jilin Sun ◽  
Zhengyu Liu ◽  
Qinyu Liu ◽  
Jonathan E. Martin

Abstract An analysis of cyclone activity in winter associated with years of strong and weak Aleutian low in the North Pacific is presented. From 1958 to 2004, 10 winters with a strong Aleutian low are defined as the strong years, while 8 winters with a weak Aleutian low are defined as the weak years. Employing a system-centered Lagrangian method, some characteristics of the cyclone activity in both sets of years are revealed. The cyclone frequency, duration, and intensity are nearly the same in both strong and weak years. The cyclone tracks in the strong years are more zonal than those in the weak years. More intense cyclone events and more large cyclone cases occur in strong years than in weak years and the deepening of cyclones in strong years is stronger than that in weak years. The analyses of geopotential height, wind, stationary Rossby wavenumber, and Eady growth rate index at 500 or 300 hPa reveal that conditions are favorable for more zonal tracks and greater cyclone growth in strong years than in weak years. An estimation of the relative change of cyclone intensity and the relative change of Aleutian low intensity is made, which shows that the interannual change of cyclone intensity is about 73% of the interannual change of Aleutian low intensity. This result suggests that the evolution of individual cyclones may be a significant driver of changes in the Aleutian low.


2012 ◽  
Vol 25 (10) ◽  
pp. 3476-3493 ◽  
Author(s):  
Young-Hyang Park ◽  
Jong-Hwan Yoon ◽  
Yong-Hoon Youn ◽  
Frédéric Vivier

Abstract On the basis of a new East Asian winter monsoon (EAWM) index and by analyzing the relationship between sea surface temperature (SST) anomalies and different atmospheric and oceanic factors in winter, this study investigates the causes of the recent unusual warming in the western North Pacific Ocean. Analyses presented here emphasize the dual contribution from the atmosphere and ocean to the local SST variability, with the relative importance of each contributor varying with the period and place. During the period 1970–89, the EAWM, controlled mostly by the Siberian high, is predominantly responsible for the SST variability in most of the western North Pacific, whereas in the period 1990–2005 ocean dynamics become increasingly important in most places or even dominant in the Kuroshio–Oyasio Extension (KOE) region. The delayed response of the KOE SST to basinwide wind stress curl forcing via Rossby waves is epoch dependent and is significant at lags of 1, 3, and 4 yr before 1990 but only at 1 yr afterward. This epoch dependency of the impact of Rossby waves is related to the different locations of the centers of action of wind stress curl in the midlatitude North Pacific between the two epochs. In addition, mean advection of the EAWM-driven anomalous SST from the southern East China Sea, which can be transported into the KOE region in about a year by the Kuroshio, likely affects the KOE SST lagged by 1 yr. The strongest positive SST trend observed in the western North Pacific results from the combined effects of the abrupt weakening of the EAWM due to the unprecedented decline of the Siberian high and the increasing role of the ocean. The latter is best evidenced by the 1-yr delayed response of the western North Pacific via the gyre circulation adjustment to the basinwide decadal-scale wind stress curl change associated with the northward shift of the strengthened Aleutian low.


Sign in / Sign up

Export Citation Format

Share Document