scholarly journals Circular RNA intraflagellar transport 80 facilitates endometrial cancer progression through modulating miR-545-3p/FAM98A signaling

2022 ◽  
Vol 33 ◽  
Author(s):  
Na Wang ◽  
Yunfeng Guo ◽  
Liqin Song ◽  
Tong Tong ◽  
Xiaomei Fan
Author(s):  
Mingyi Zhou ◽  
Zhuo Yang ◽  
Danbo Wang ◽  
Peng Chen ◽  
Yong Zhang

Abstract Background As a novel type of non-coding RNA, circular RNAs (circRNAs) play a critical role in the initiation and development of various diseases, including cancer. However, the exact function of circRNAs in human cervical cancer remains largely unknown. Methods We identified the circRNA signature of upregulated circRNAs between cervical cancer and paired adjacent normal tissues. Using two different cohorts and GEO database, a total of six upregulated circRNAs were identified with a fold change > 2, and P < 0.05. Among these six circRNAs, hsa_circ_0072088 (circZFR) was the only exonic circRNA significantly overexpressed in cervical cancer. Functional experiments were performed to investigate the biological function of circZFR. CircRNA pull-down, circRNA immunoprecipitation (circRIP) and Co-immunoprecipitation (Co-IP) assays were executed to investigate the molecular mechanism underlying the function of circZFR. Results Functionally, circZFR knockdown represses the proliferation, invasion, and tumor growth. Furthermore, circRNA pull-down experiments combined with mass spectrometry unveil the interactions of circZFR with Single-Stranded DNA Binding Protein 1 (SSBP1). Mechanistically, circZFR bound with SSBP1, thereby promoting the assembly of CDK2/cyclin E1 complexes. The activation of CDK2/cyclin E1 complexes induced p-Rb phosphorylation, thus releasing activated E2F1 leading to cell cycle progression and cell proliferation. Conclusion Our findings provide the first evidence that circZFR is a novel onco-circRNA and might be a potential biomarker and therapeutic target for cervical cancer patients.


2017 ◽  
Vol 403 ◽  
pp. 305-317 ◽  
Author(s):  
Zhenyu Zhong ◽  
Mengge Huang ◽  
Mengxin Lv ◽  
Yunfeng He ◽  
Changzhu Duan ◽  
...  

Author(s):  
Shuang Yuan ◽  
Panchan Zheng ◽  
Xiao Sun ◽  
Judan Zeng ◽  
Wenjiao Cao ◽  
...  

Background: Medroxyprogesterone acetate (MPA) is one of the most commonly prescribed progestin for the treatment of endometrial cancer (EC). Despite initial benefits, many patients ultimately develop progesterone resistance. Circular RNA (circRNA) is a kind of noncoding RNA, contributing greatly to the development of human tumor. However, the role of circular RNA in MPA resistance is unknown.Methods: We explored the expression profile of circRNAs in Ishikawa cells treated with (ISK/MPA) or without MPA (ISK) by RNA sequencing, and identified a key circRNA, hsa_circ_0001860. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to verify its expression in MPA-resistant cell lines and tissues. CCK8, Transwell, and flow cytometry were used to evaluate the functional roles of hsa_circ_0001860 in MPA resistance. The interaction between hsa_circ_0001860 and miR-520 h was confirmed by bioinformatics analysis, luciferase reporter assay, and RNA pull-down assay.Results: The expression of hsa_circ_0001860 was significantly downregulated in MPA-resistant cell lines and tissues, and negatively correlated with lymph node metastasis and histological grade of EC. Functional analysis showed that hsa_circ_0001860 knockdown by short hairpin RNA (shRNA) promoted the proliferation, inhibited the apoptosis of Ishikawa cells, and promoted the migration and invasion of Ishikawa cells treated with MPA. Mechanistically, hsa_circ_0001860 promoted Smad7 expression by sponging miR-520 h.Conclusion: Hsa_circ_0001860 plays an important role in the development of MPA resistance in EC through miR-520h/Smad7 axis, and it could be targeted to reverse the MPA resistance in endometrial cancer.


2021 ◽  
Vol Volume 13 ◽  
pp. 75-87
Author(s):  
Qingshan Ma ◽  
Baogang Huai ◽  
Yuting Liu ◽  
Zhongyao Jia ◽  
Qilong Zhao

Epigenomics ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 187-197 ◽  
Author(s):  
Hanzi Xu ◽  
Zhen Gong ◽  
Yang Shen ◽  
Yichen Fang ◽  
Shanliang Zhong

Sign in / Sign up

Export Citation Format

Share Document