A new calculation formula to describe the dynamic pressure of water jet peening with elliptical nozzle for high-efficiency treatment

Author(s):  
Hong-Xiang Zheng ◽  
Yun Luo ◽  
Bao-Zhu Zhang ◽  
Wen-Chun Jiang ◽  
Shan-Tung Tu

Water jet peening is a good potential method to control welding residual stresses. The water jet with elliptical nozzle can improve the treatment efficiency due to its large treatment area. In this article, the water jet velocity and dynamic pressure for different elliptical nozzle dimensions and standoff distances are discussed by numerical simulation. The results show that when the axial distance is 10 mm, the effective impact diameter of the elliptical nozzle a/b=8–12 is about 2 times or more than that of the circular nozzle. The length of the jet core of the elliptical nozzle is only related to the outlet structure and is independent of the inlet pressure. The correlation between the dimensionless core length of the elliptical water jet and its long and short axes is derived. When the ratio of the major axis to the minor axis is between 7 and 13, the core length of the elliptical water jet is 7–7.5 times that of its minor axis. Combining the suitable treatment area and dynamic pressure, the elliptical nozzle with an axis ratio of 8 is recommended to control the welding residual stress. Finally, a new formula for calculating dynamic pressure distribution is proposed for the elliptical nozzle water jet at different stages.

Author(s):  
Hong-xiang Zheng ◽  
Yun Luo ◽  
Jing-Yu Zang ◽  
Qian Zhang

Abstract Water jet peening can effectively improve the fatigue strength of metal materials, and the outlet shape of nozzle greatly affects the effect of water jet peening. In this paper, the effects of nozzle outlet shape on water jet velocity and impact pressure is studied by numerical simulation, and the jet velocity and dynamic pressure for different standoff distances are also discussed. The results show that the water jets of square, circular and triangular nozzles are highly concentrated, and the water jet of elliptical nozzles is the most divergent. The axial velocity attenuation of the square nozzle along the axis is slower than that of the other three nozzles. The water axial velocity of the elliptical nozzle attenuates fastest and the length of the core segment of the water jet is the smallest. Within a certain axial distance, the dynamic pressure area in the central area of the elliptical water jet is obviously larger than that of the other three nozzles, and the effective treatment range is large, which is more suitable for the welding surface strengthening operation.


Author(s):  
V. G. Pogrebnyak ◽  
◽  
I. I. Chudyk ◽  
A. V. Pogrebnyak ◽  
I. V. Perkun ◽  
...  

The energetic capabilities of a high-speed jet of an aqueous solution of polyethylene oxide (PEO) with varying concentration and different outflow pressures from a jetforming nozzle were investigated using the length of the forming channel in the model of the casing of an oil and gas well, cement sheath and rock layer, as well as impact of the jet force on a metal plate fixed on a physical pendulum. The experimental data made it possible to obtain a calculated dependence in a dimensionless form to determine the quality (initial sections) of jets of aqueous solutions with different concentrations and molecular weights of PEO, considering the real parameters of the jet-forming nozzles of the hydroperforator. A comprehensive study of the perforation process made it possible to substantiate the mechanism of the high destructive capacity of a high-speed jet of polymer solution. It has been established that the mechanism of the high destructive capacity of the polymer water jet is not due to the Toms effect, but caused by the destructive action of the dynamic pressure of the polymer water jet «reinforced» by strongly unfolded macromolecular chains under the action of a tensile flow in the inlet area of the jet forming nozzle of the hydroperforator. Keywords: perforator; jet nozzle; jet quality; casing; cement sheath; rock; Toms effect.


2017 ◽  
Vol 122 (1247) ◽  
pp. 131-147 ◽  
Author(s):  
A. Bajpai ◽  
E. Rathakrishnan

ABSTRACTMach 2 jet from a convergent-divergent elliptical nozzle, of aspect ratio 2, has been controlled with limiting flat and arc tabs. The mixing promoting capability of the flat and arc tabs were studied in the presence of different levels of pressure gradient, at the nozzle exit, corresponding to nozzle pressure ratios of 4 to 8, in steps of one. The geometrical blockage of both the tabs is 5% of nozzle exit area. For the flat tab along the minor axis, the waves in the core become weaker and the core length becomes shorter than the uncontrolled jet, at all the NPRs studied. But the flat tab along the major axis promotes mixing only for some NPRs and retards the mixing for the rest of the NPRs studied. At NPR 5, the flat tab along the minor axis causes the largest core length reduction of 86%. For circular arc tab, along the minor axis, the maximum core length reduction is 55% at NPR 6. Arc tab along the major axis protects the core length for the entire range of the nozzle pressure ratios tested and maximum extension in core length is found at NPR 4, which is 40%.


1991 ◽  
Vol 113 (4) ◽  
pp. 555-562 ◽  
Author(s):  
Z. F. Dong ◽  
M. A. Ebadian

The complete form of the Navier-Stokes equations is solved in this paper for a steady, incompressible, fully developed laminar flow in a curved duct of elliptic cross section. This is achieved by the use of the control volume-based finite difference method via the numerically generated boundary fitted coordinate system. The curvature ratio is included in the primitive variable governing equations, which are solved based on the SIMPLE algorithm. Solutions are obtained for the minor-axis to major-axis ratios of the elliptic duct, 0.2, 0.5, and 0.8, and for Dean numbers ranging from 11.41 to 635.7. It is found that only one pair of vortices appears on the cross-section, even at a Dean number of 635.7. The friction factor and the ratios of the curved duct to straight duct are tabulated and the correlation equation is developed. Furthermore, the distribution of the axial velocity is displayed graphically to illustrate its variations with the Dean number and the minor-axis to major-axis ratio of the elliptic duct on the horizontal symmetry line and on the half-vertical symmetry line. The present method is also applied to solve for a fully developed laminar flow in a curved square flow. The results are compared with the data available in the literature and very close agreement is observed.


2016 ◽  
Vol 0 (0) ◽  
Author(s):  
Anuj Bajpai ◽  
Ethirajan Rathakrishnan

AbstractThe efficiency of tabs of two geometries in promoting the mixing of a Mach 2 elliptic jet has been studied. Limiting tab of triangular and circular geometry (crosswire) of 5 % blockage placed along major and minor axis at the nozzle exit, are tested for nozzle pressure ratio from 4 to 8, in steps of one. Both tabs are efficient mixing promoters, at all the tested NPRs, when placed along the minor axis. But along major axis the crosswire retards the mixing, at all the NPRs. The triangular tab along the major axis is also found to retard the mixing at NPRs 4 and 5, but for nozzle pressure ratios above 5 it causes mixing enhancement even when placed along the major axis. The triangular tab is found to be a better mixing promoter than the crosswire. The maximum core length reduction of 88 % is caused by triangular tab along the minor axis is at NPR4. The corresponding core length reduction for the crosswire is only 72 %. Shadowgraph pictures of controlled jets show that both tabs weaken the waves in jet core. The geometry and orientation of the tab and the expansion level influence the mixing caused by the tab.


Author(s):  
Kun Ting Eddie Chua ◽  
Karia Dibert ◽  
Mark Vogelsberger ◽  
Jesús Zavala

Abstract We study the effects of inelastic dark matter self-interactions on the internal structure of a simulated Milky Way (MW)-size halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered elastic collisions, theoretical considerations motivate the existence of multi-state dark matter where transitions from the excited to the ground state are exothermic. In this work, we consider a self-interacting, two-state dark matter model with inelastic collisions, implemented in the Arepo code. We find that energy injection from inelastic self-interactions reduces the central density of the MW halo in a shorter timescale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case (minor-to-major axis ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM case (s ≈ 0.75). The speed distribution f(v) of dark matter particles at the location of the Sun in the inelastic SIDM model shows a significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and CDM.


2012 ◽  
Vol 215-216 ◽  
pp. 1236-1240
Author(s):  
Yao Tian Fan

Design of turning area for sea port is generally done according to the outcome of theoretical calculation or real-ship trial. However, these methods only take into account some limited respects for planning a port or are not so cost-effective. In this paper, computer simulator is used for optimizing the size of turning area for Yangshan LNG terminal. The outcome indicates that the major axis and minor axis of the turning area can meet the requirement of Q-Max LNG carrier berthing operation and it is suggested to do such maneuvering in some given conditions related to wind, current, tide, visibility and wave.


2001 ◽  
Vol 105 (1043) ◽  
pp. 9-16 ◽  
Author(s):  
S. B. Verma ◽  
E. Rathakrishnan

Abstract The shock-structure and the related acoustic field of underexpanded jets undergoes significant changes as the Mach number Mj is increased. The present investigation is carried out to study the effect of Mach number on an underexpanded 2:1 elliptic-slot jet. Experimental data are presented for fully expanded Mach numbers ranging from 1.3 to 2.0. It is observed that the ‘cross-over’ point at the end of the first cell at low Mach numbers gets replaced by a normal shock at a highly underexpanded condition resulting in the formation of a ‘barrel’ shock along the minor-axis side with a ‘bulb’ shock formed along the major-axis side. The above change in shock structure is accompanied by a related change in the acoustic field. The amplitude of fundamental frequency along the minor-axis side grows with Mj but falls beyond Mj = 1.75. Along the major-axis side, however, the fundamental frequency does not exist at low Mach numbers. It appears at Mj = 1.75 but then falls at Mj = 2.0. The related azimuthal directivity of overall noise levels (OASPL) shows significant changes with Mj.


2002 ◽  
Vol 124 (3) ◽  
pp. 197-203 ◽  
Author(s):  
S. R. Gollahalli ◽  
D. Pardiwalla

This study was directed to understand the coupling effects of the noncircular geometry of the burner and a crossflow on the combustion of gas jets. This paper compares the characteristics of turbulent propane jet flames from circular (diameter=0.45 cm) and elliptic (major axis/minor axis=3) burners of equivalent exit area in a crossflow. The elliptic burner was oriented with its major axis or minor axis aligned with the crossflow. Experiments were conducted in a wind tunnel provided with optical and probe access and capable of wind speeds up to 12.5 m/s. The burners were fabricated with metal tubes. Instrumentation included a Pt-Pt/13% Rh thermocouple, a quartz-probe gas sampling system, chemiluminescent and nondispersive infrared analyzers, a video-recorder, and a computer data acquisition system. The measurements consisted of the upper and lower limits of jet velocity for a stable flame, flame configuration, and visible length. Flame structure data including temperature profiles and concentration profiles of CO2,O2, CO, and NO were obtained in a two-zone flame configuration (at jet to crossflow momentum flux ratio=0.11), where a planar recirculation exists in the wake of the burner tube followed by an axisymmetric tail. The relative emission indicators of CO and NO were estimated from the composition data. Results show that the upper and lower limits of the fuel jet velocity increase with the crossflow velocity for all burners, and the rate of increase is highest for the elliptic burner with its minor axis aligned with the crossflow. That burner configuration also produces the longest flame. The relative emission indicators show that the CO production is lower and NO production is higher with elliptic burners than with circular burners in crossflow.


2014 ◽  
Vol 51 (11) ◽  
pp. 1007-1016 ◽  
Author(s):  
Mackenzie Baert ◽  
Michael E. Burns ◽  
Philip J. Currie

For fossil assemblages, quantitative size and shape studies are often complicated by diagenetic distortion. Different vertebrate elements, although subjected to similar burial stresses, exhibit deformations based upon their original shapes; this hypothesis is tested here by quantitatively comparing deformed humeri and femora from the Danek Bonebed (a monodominant Edmontosaurus regalis bonebed from the upper Campanian Horseshoe Canyon Formation in Edmonton, Alberta, Canada) with samples of undeformed humeri and femora from modern and fossil assemblages. Analyses suggest that at the Danek Bonebed a strong relationship exists between element length and circumference despite being distorted by crushing deformation. Major and minor axes of the midshaft cross section, however, were not uniformly distorted. Although their anatomical position did not change, the major axis became longer relative to the minor axis in distorted specimens. A regression based on the undeformed humeri was not able to accurately predict circumference in the Danek humeri. Further study might quantify the deformation of other bones in the Danek Bonebed and could be extended to other assemblages and genera. Caution should be taken when conducting studies in which diagenetic crushing may have altered morphological features of fossil vertebrate remains.


Sign in / Sign up

Export Citation Format

Share Document