nlrp3 activity
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Jie Shi ◽  
Yang Xia ◽  
Huihong Wang ◽  
Zhongjie Yi ◽  
Ruoruo Zhang ◽  
...  

Piperlongumine (PL) is an alkaloid from Piper longum L. with anti-inflammatory and antitumor properties. Numerous studies have focused on its antitumor effect. However, the underlying mechanisms of its anti-inflammation remain elusive. In this study, we have found that PL is a natural inhibitor of Nod-like receptor family pyrin domain-containing protein-3 (NLRP3) inflammasome, an intracellular multi-protein complex that orchestrates host immune responses to infections or sterile inflammations. PL blocks NLRP3 activity by disrupting the assembly of NLRP3 inflammasome including the association between NLRP3 and NEK7 and subsequent NLRP3 oligomerization. Furthermore, PL suppressed lipopolysaccharide-induced endotoxemia and MSU-induced peritonitis in vivo, which are NLRP3-dependent inflammation. Thus, our study identified PL as an inhibitor of NLRP3 inflammasome and indicated the potential application of PL in NLRP3-relevant diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mehboob Ali ◽  
Mehak Gupta ◽  
Abubakar Wani ◽  
Ankita Sharma ◽  
Mohd Abdullaha ◽  
...  

Aberrant activation of NLRP3 inflammasome has been implicated in several inflammatory diseases. Autophagy is one of the primary mechanisms that regulate NLRP3 inflammasome activity. In this study, we attempted to target NLRP3 inflammasome activity by a synthetic compound IIIM-941. We found that IIIM-941 inhibits ATP induced NLRP3 inflammasome by induction of autophagy through AMPK pathway in bone marrow derived macrophages (BMDMs) and J774A.1 cells. It was interesting to observe that IIIM-941 did not show any inhibitory activity against LPS induced pro-inflammatory cytokines TNF-α and IL-6. The anti-NLRP3 activity of IIIM-941 was significantly reversed when we attempted to block autophagy by using either pharmacological inhibitor bafilomycin A1or by using siRNA against AMPK. Further, we found that IIIM-941 downregulated the expression of NLRP3 and prevented the oligomerization of ASC to exert its anti-NLRP3 inflammasome effect in J774A.1 cells. We validated inhibitory activity of IIIM-941 against NLRP3 in three different mice models. The anti-inflammatory effect of IIIM-941 was highly significant in ATP induced peritoneal inflammation model. IIIM-941 was similarly effective in suppressing MSU induced IL-1β in the air pouch model of inflammation without affecting the levels of TNF-α and IL-6. Finally, oral efficacy of IIIM-941 was also proved in MSU indued foot paw edema model of inflammation in mice at 10 and 20 mg/kg (b.w.). The compounds like IIIM-941 can be explored further for the development of therapies against diseases such as Alzheimer’s disease and Parkinson’s disease, where hampered autophagy and NLRP3 activation play a crucial role in the pathological development.


2021 ◽  
Vol 22 (12) ◽  
pp. 6531
Author(s):  
Marilena Pariano ◽  
Stefania Pieroni ◽  
Antonella De Luca ◽  
Rossana G. Iannitti ◽  
Monica Borghi ◽  
...  

Inflammasomes are powerful cytosolic sensors of environmental stressors and are critical for triggering interleukin-1 (IL-1)-mediated inflammatory responses. However, dysregulation of inflammasome activation may lead to pathological conditions, and the identification of negative regulators for therapeutic purposes is increasingly being recognized. Anakinra, the recombinant form of the IL-1 receptor antagonist, proved effective by preventing the binding of IL-1 to its receptor, IL-1R1, thus restoring autophagy and dampening NLR family pyrin domain containing 3 (NLRP3) activity. As the generation of mitochondrial reactive oxidative species (ROS) is a critical upstream event in the activation of NLRP3, we investigated whether anakinra would regulate mitochondrial ROS production. By profiling the activation of transcription factors induced in murine alveolar macrophages, we found a mitochondrial antioxidative pathway induced by anakinra involving the manganese-dependent superoxide dismutase (MnSOD) or SOD2. Molecularly, anakinra promotes the binding of SOD2 with the deubiquitinase Ubiquitin Specific Peptidase 36 (USP36) and Constitutive photomorphogenesis 9 (COP9) signalosome, thus increasing SOD2 protein longevity. Functionally, anakinra and SOD2 protects mice from pulmonary oxidative inflammation and infection. On a preclinical level, anakinra upregulates SOD2 in murine models of chronic granulomatous disease (CGD) and cystic fibrosis (CF). These data suggest that protection from mitochondrial oxidative stress may represent an additional mechanism underlying the clinical benefit of anakinra and identifies SOD2 as a potential therapeutic target.


2021 ◽  
Vol 22 (4) ◽  
pp. 2108
Author(s):  
Robert Root-Bernstein

Severe COVID-19 is characterized by a “cytokine storm”, the mechanism of which is not yet understood. I propose that cytokine storms result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This proposition is based on eight linked types of evidence and their logical connections. (1) Severe cases of COVID-19 differ from healthy controls and mild COVID-19 patients in exhibiting increased TLR4, TLR7, TLR9 and NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate TLR3, TLR7, RIG1 and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from its mild form in being characterized by bacterial and fungal infections. (5) Respiratory bacterial and fungal infections activate TLR2, TLR4, TLR9 and NLRP3. (6) A combination of SARS-CoV-2 with bacterial/fungal coinfections accounts for the IRAP found in severe COVID-19 and why it differs from mild cases. (7) Notably, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9 and TLR4 (both bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal) synergize with NLRP3 (viral and bacterial). (8) Thus, a SARS-CoV-2-bacterium/fungus coinfection produces synergistic innate activation, resulting in the hyperinflammation characteristic of a cytokine storm. Unique clinical, experimental and therapeutic predictions (such as why melatonin is effective in treating COVID-19) are discussed, and broader implications are outlined for understanding why other syndromes such as acute lung injury, acute respiratory distress syndrome and sepsis display varied cytokine storm symptoms.


Author(s):  
Tsuyoshi Nishiguchi ◽  
Masaaki Iwata ◽  
Naofumi Kajitani ◽  
Akihiko Miura ◽  
Ryoichi Matsuo ◽  
...  

2020 ◽  
Vol 5 ◽  
pp. 247
Author(s):  
Sarah E. Corcoran ◽  
Iva Hafner-Bratkovič ◽  
Reena Halai ◽  
Raquel Domingo-Fernandez ◽  
Daire O'Leary ◽  
...  

Background: The cryopyrin-associated periodic syndromes (CAPS) are a group of inherited disorders associated with systemic auto-inflammation. CAPS result from gain-of-function mutations in NLRP3, which result in formation of an intracellular protein complex known as the NLRP3 inflammasome. This leads to overproduction of IL-1β and other pro-inflammatory signals, resulting in inflammatory symptoms. Treatments for NLRP3-related diseases are biologic agents that directly target IL-1β. We sought to determine if the orally available small molecule NLRP3 inhibitor MCC950 could inhibit IL-1β ex vivo in a cohort of patients with autoinflammatory disease. Methods: Patients were recruited to donate blood, from which PBMCs were isolated and assayed in the presence of MCC950 to determine inhibitory efficacy. Results: We found that apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and mature IL-1β was higher in ex vivo PBMCs from CAPS patients than healthy donors. MCC950 inhibited production of mature IL-1β in PBMC from CAPS patients with a range of mutations and blocked NLRP3 activity in an in vitro mutation reconstitution assay. Similar results were observed with PBMC from two patients with Schnitzler’s Syndrome, another auto-inflammatory disease. Conclusions: The NLRP3 inflammasome inhibitor MCC950 blocked constitutive activation of NLRP3 observed in the PBMCs of CAPS patients. This study highlights the potential utility of NLRP3 inhibition by a small molecule for rare autoinflammatory diseases that are driven by NLRP3.


2020 ◽  
Author(s):  
Francesca La Rosa ◽  
Chiara Paola Zoia ◽  
Chiara Bazzini ◽  
Alessandra Bolognini ◽  
Marina Saresella ◽  
...  

Abstract Background: Aβ42-deposition plays a pivotal role in AD-pathogenesis by inducing the activation of microglial cells and neuroinflammation. This process is antagonized by microglia-mediated clearance of Aβ plaques. Activation of the NLRP3 inflammasome is involved in neuroinflammation and in the impairments of Aβ-plaques clearance. Stavudine (d4T) on the other hand down-regulates the NLRP3 inflammasome and stimulates autophagy-mediated Aβ-clearing in a TPH-1 cell line model.We explored the effect of d4T on Aβ-autophagy using PBMC of AD patients that were primed with LPS and stimulated with Aβ in the absence/presence of d4T. We analyzed the NLRP3 activity by measuring NLRP3-ASC complexes formation by AMNIS Flow-sight and pro-inflammatory cytokines (IL-1β, IL-18 and Caspase-1) production by ELISA. Western blot analyses were used to measure phosphorylation and protein expression of p38, CREB, ERK and AKT, p70, LAMP 2A, Beclin-1 and Bax.Results: Data showed that d4T: 1) down regulates NLRP3 inflammasome activation and the production of down-stream proinflammatory cytokines even in PBMC; 2) stimulates the phosphorylation of AKT, ERK, p70 as well as LAMP2A production, but does modulate beclin-1, suggesting a selective effect of this compound on chaperone-mediated autophagy (CMA); 3) up regulates p-CREB and BAX, possibly diminishing Aβ-mediated cytotoxicity; and 4) reduces the phosphorylation of p-38, a protein involved in the production of pro-inflammatory cytokines.Conclusions: d4T reduces the activation of the NLRP3 inflammasome and stimulates CMA autophagy as well as molecular mechanisms that modulate cytotoxicity and reduce inflammation in cells of AD patients. It might be interesting to verify the possibly beneficial effects of d4T in the clinical scenario.


2019 ◽  
Author(s):  
Niklas A. Schmacke ◽  
Moritz M. Gaidt ◽  
Inga Szymanska ◽  
Fionan O’Duill ◽  
Che A. Stafford ◽  
...  

ABSTRACTThe NLRP3 inflammasome plays a central role in antimicrobial defense, as well as in sterile inflammatory conditions. NLRP3 activity is governed by two independent signals. The first signal primes NLRP3, allowing it to respond to its activation signal. In the murine system, the mitotic spindle kinase NEK7 has been identified as a crucial factor in relaying the activation signal to NLRP3. Here we show that the requirement for NEK7 can be bypassed by TAK1-dependent post-translational priming. Under pro-inflammatory conditions that activate TAK1, NEK7 was dispensable for NLRP3 inflammasome formation in human and murine cells. Intriguingly, dissecting the NEK7 requirement in iPSC-derived primary human macrophages revealed that this NEK7-independent mechanism constitutes the predominant NLRP3 priming pathway in these cells. In summary, our results suggest that NEK7 functions as an NLRP3 priming – rather than activation – factor that can work in synergy or redundancy with other priming pathways to accelerate inflammasome activation.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Florian Hoss ◽  
James L. Mueller ◽  
Francisca Rojas Ringeling ◽  
Juan F. Rodriguez-Alcazar ◽  
Rebecca Brinkschulte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document