scholarly journals Single Axis Solar Tracker for Maximizing Power Production and Sunlight Overlapping Removal on the Sensors of Tracker

2021 ◽  
Vol 1 (2) ◽  
pp. 186-197
Author(s):  
Mst Jesmin Nahar ◽  
Md Rasel Sarkar ◽  
Moslem Uddin ◽  
Md Faruk Hossain ◽  
Md Masud Rana ◽  
...  

This paper presents the design and execution of a solar tracker system devoted to photovoltaic (PV) conversion panels. The proposed single-axis solar tracker is shifted automatically based on the sunlight detector or tracking sensor. This system also removes incident sunlight overlapping from sensors that are inside the sunlight tracking system. The Light Dependent Resistor (LDR) is used as a sensor to sense the intensity of light accurately. The sensors are placed at a certain distance from each other in the tracker system to avoid sunlight overlapping for maximum power production. The total system is designed by using a microcontroller (PIC16F877A) as a brain to control the whole system. The solar panel converts sunlight into electricity. The PV panel is fixed with a vertical axis of the tracker. This microcontroller will compare the data and rotate a solar panel via a stepper motor in the right direction to collect maximum photon energy from sunlight. From the experimental results, it can be determined that the automatic (PV solar tracker) sun tracking system is 72.45% more efficient than fixed panels, where the output power of the fixed panel and automatically adjusted panel are 8.289 watts and 14.287 watts, respectively.

2021 ◽  
Vol 2107 (1) ◽  
pp. 012024
Author(s):  
Lim Xin You ◽  
Nordiana Shariffudin ◽  
Mohd Zamri Hasan

Abstract Nowadays, solar energy’s popularity is growing consistently every year, along with the growth of amazing solar technologies, which is considered to be one of the most popular. Non-renewable energy like petrol and gasoline is being replaced with solar energy, which is renewable energy. The main objective of this project is to design and simulate a robot solar system. The robot is developed using Arduino Mega 2560 as the main brain of the system. This system is equipped with a solar tracking system to track the movement of the sun and LDR is used to detect the presence of sunlight. The solar tracker is used to get the maximum efficiency of solar energy and reduce power losses. In addition, the solar tracker can rotate from 0° - 180°, which is the best angle for the solar panel to reach the sunlight. This robot will be attached to the sprinkler system to perform the watering process. This robot is developed for use in the agriculture field to reduce the manpower and cost of the watering process. Three analyses will be conducted in this project such as solar panel analysis, Wi-Fi connectivity analysis and sprinkler system analysis. The result shows the solar panel will gain the highest intensity of the sunlight at 12.00 pm and a sunny day compared to the other time and a cloudy day. The maximum range of Wi-Fi connectivity and the water pump, time used to finish the watering process and watering area will be discussed.


2015 ◽  
Vol 793 ◽  
pp. 353-357
Author(s):  
F.S. Abdullah ◽  
H.M. Nuhafiz ◽  
O. Mardianaliza ◽  
A. Yusof ◽  
Noor Anida

Solar tracker is a device that detects the movement of the sun. Solar tracker receive maximum sun ray in order to produce the maximum power supply by the photovoltaic (PV) panels system. It also depends on the environment factor such as solar irradiation and temperature of the panels. This paper presents the development of the automatic solar tracking system, the construction of the sensor circuit, programming of the control system and also its performance analysis. This automatic solar tracking system is designed with an electronic circuit control using PIC that can trigger the dc motors when the LDR sensors detect sunlight. DC motor will move vertical and 360 ̊ horizontal to increase efficiency of sunlight to the solar panel. Solar panel for the project gets power supply from the battery. The battery will be charged using power from the solar panel.


2019 ◽  
Vol 10 (1) ◽  
pp. 48-51
Author(s):  
Mohammad Hasib Al Isbilly ◽  
Tubagus Fahm ◽  
Markhaban Siswanto

The use of fossil energy as an electric fuel causes the earth to experience global-warming. As a tropical country, Indonesia has great potential to develop solar energy as a substitute for fossil energy. Increased efficiency in capturing sunlight will further optimize the work of the Solar Power Plant (PLTS). One way that can be done is by making a solar tracker so that the Solar Panel can follow the direction of the sun's motion. Optimization Design The solar tracker uses dual axis using Proportional Integral Differential (PID) control tuned with the Imperialis Competitive Algorithm (ICA), which is expected to be able to get the right angle between the yaw and Pitch with Azimuth and Elevation Angle. The PID-ICA controller design is done using matlab software. For vertical and horizontal rotary axes it is expected to obtain the best PID-ICA constant, which in turn will affect the performance and optimization of the photovoltaic system. The best optimization results using ICA-based PID with a settling time value of 0.0906 s on the horizontal axis and 0.094 s on the vertical axis


Author(s):  
Yasir Hashim Naif

Green and clean energy depends meanly on the Solar energy, especially at urban area. This paper presents the Arduino-based new design of dual-axis solar tracking system with high-efficiency using through the use of five-point sunlight sensors. The main objective of this research is to convert the maximum sunlight to electrical power by auto movement of the solar panel. This research is divided into two stages, first stage related to hardware design and the second related to software development. In hardware design, five light dependent resistors (LDR) have been used for tracking light direction source. Two linear actuators have been used to move the solar panel towards the maximum light intensity direction by using LDR sensors. Moreover, the software is constructed using C++ programming language and uploaded to the Arduino UNO platform. The efficiency of the designed tracking system has been examined and compared with fixed and single axis solar tracker and results shows that the new system has better efficiency than the fixed or single axis  system.


2015 ◽  
Vol 2 (1) ◽  
pp. 29-34
Author(s):  
Yohanes Climacus Sutama ◽  
Houtman P. Siregar ◽  
Dedy Loebis

This research focuses on a sensor that is suitable for solar tracking. In tracking system, solar panel harvests energyoptimally if the panel surface position is perpendicular to the light direction. To constructs mechatronic system, theselection of sensor is very important. Datasheet is helpful for pre selection. Further research has been carried out todetermine the specific sensor which will be mounted into electronic circuit. Based on the experiment on selectedsensor, sensor characteristic is obtained in detail. Sensor output is processed in the microprocessor. At the end, anactuator has a task to swap desired mechanical movement which is instructed by controller. Actuator must fulfilltechnical requirements, such as load, speed, durability, price, availability and maintenance aspect. This papergives an overview to answer this problem.


2019 ◽  
Vol 9 (5) ◽  
pp. 894 ◽  
Author(s):  
José Ruelas ◽  
Flavio Muñoz ◽  
Baldomero Lucero ◽  
Juan Palomares

This work describes a new photovoltaic (PV) sun tracker design methodology that utilizes the advantages that the orientation and efficiency of the PV panel offer due to the latitude of the installation zone. Furthermore, the proposed design methodology is validated experimentally via the implementation of a solar tracker with dual axes at a specific location (27.5° latitude). In this case, the methodology enables the incorporation of a high-availability, low-accuracy, and low-cost tracking mechanism. Based on the results, the feasibility of this type of solar tracker for latitudes close to 30° is demonstrated, as this tracking system costs 27% less than the traditional commercial systems that use slew drives. This system increases the collection efficiency by 24% with respect to a fixed device. The proposed methodology, which is based on an orientation efficiency chart, can be applied to the construction or control of other types of solar tracker systems.


Author(s):  
Siti Amely Jumaat ◽  
Adam Afiq Azlan Tan ◽  
Mohd Noor Abdullah ◽  
Nur Hanis Radzi ◽  
Rohaiza Hamdan ◽  
...  

<span lang="EN-MY">This project discusses on the development of horizontal single axis solar tracker using Arduino UNO which is cheaper, less complex and can still achieved the required efficiency. For the development of horizontal single axis solar tracking system, five light dependent resistors (LDR) has been used for sunlight detection and to capture the maximum light intensity. A servo motor is used to rotate the solar panel to the maximum light source sensing by the light dependent resistor (LDR) in order to increase the efficiency of the solar panel and generate the maximum energy. The efficiency of the system has been tested and compared with the static solar panel on several time intervals. A small prototype of horizontal single axis solar tracking system will be constructed to implement the design methodology presented here. As a result of solar tracking system, solar panel will generate more power, voltage, current value and higher efficiency. </span>


Author(s):  
Smita Dinker

Solar energy is a clean, easily accessible and abundantly available alternative energy source in nature. Getting solar energy from nature is very beneficial for power generation. Using a fixed Photovoltaic panels extract maximum energy only during 12 noon to 2 PM in Nigeria which results in less energy efficiency. Therefore, the need to improve the energy efficiency of PV solar panel through building a solar tracking system cannot be over-emphasized. Photovoltaic panels must be perpendicular with the sun in order to get maximum energy. The methodology employed in this work includes the implementation of an Arduino based solar tracking system. Light Dependent Resistors (LDRs) are used to sense the intensity of sunlight and hence the PV solar panel is adjusted accordingly to track maximum energy. The mechanism uses servo motor to control the movement of the solar panel. The microcontroller is used to control the servo motor based on signals received from the LDRs. The result of this work has clearly shown that the tracking solar panel produces more energy compared to a fixed panel.


Author(s):  
A. H. Mohaimin ◽  
M. R. Uddin ◽  
A. Khalil

<p>Power output from a small solar panel can be affected by its power consumption when it consumes power from the solar panel. There has been a lack of proper research and experiment in the use of small solar panel with tracking systems. Its significance was detailed in this paper where the voltage output are compared with those which were externally powered. The solar trackers and a microcontroller have been designed and fabricated for this research. Due to the use of the tracking system (single axis and dual axis), the power consumption varies from one to another and its effect on the voltage output. Several experiments have been conducted and it was concluded that small solar panels are not efficient enough to utilize with tracking capabilities due to an increase in power consumption. The externally powered system was found to generate 18% more output compared to a selfsustaining system and that the increase in average power consumptions compared to a fixed panel were 31.7% and 82.5% for single-axis and dualaxis tracker respectively. A concrete evidence was made that utilizing solar tracking capabilities for low power rated solar panel is unfeasible.</p>


2021 ◽  
Vol 57 (1) ◽  
pp. 37-44
Author(s):  
O. Drozd ◽  
L. Scherbak

This paper is dedicated to the research of solar energy issues, namely to increase the efficiency of solar panels and to compare the performance of solar panels in different configurations. The author researches and compares the performance of solar panels with and without trackers. The sun is an inexhaustible source of energy that mankind has yet to appreciate. Solar energy is the kinetic energy of radiation (mainly light) generated by thermonuclear reactions in the bowels of the sun. Solar energy is one such alternative, the neglect of which will in the near future lead to catastrophic consequences for humanity. Solar energy is a progressive method of obtaining various types of energy through solar radiation. Solar energy is one of the most promising and dynamic renewable energy sources (RES). Each year, the increase in commissioned capacity is approximately 40-50%. In the last fifteen years alone, the proportion of solar electricity in the world has exceeded the 5% mark. To increase the efficiency of solar panels, designers and engineers are developing new devices and devices, one of which is a solar tracker. A solar tracker is a device that allows you to control the movement of the sun across the sky, as well as move the solar panel to the position where the absorption of sunlight is most effective. After the conducted experiment , calculations an comparison we can see the next results. Without the solar tracker our panel generated maximum power in 2.4 Watt. After the solar tracking system integration, our panel generated almost 20 (19.8) Watt of power! After this comparison we can tell that the generated power increase in 8.25 Watts. We can also admit that the amount of generated power depends on light intensity. But solar panels are the most effective when the solar beam falls perpendicular to solar cell and solar panel is at an angle of 75 – 85 degrees


Sign in / Sign up

Export Citation Format

Share Document