scholarly journals Rock analysis to characterize Saudi soft sandstone rock

2021 ◽  
Vol 11 (6) ◽  
pp. 2381-2387
Author(s):  
Omar A. Almisned ◽  
Naif B. Alqahtani

AbstractAs more engineering projects and activities are taking place on and around weak rocks, it is becoming more important to study and characterize them. Since regular practices of rock mechanical testing are not effective for weak rocks, special laboratory tests and measurements were performed to characterize the Alkharj Saudi weak sandstone rock which is a clastic rock dominantly sandy limestone and sandstone. Test results are presented in this paper. Porosity, permeability, and mechanical properties (stress, strain, Poisson's ratio, confined compressive strength and unconfined compressive strength) were obtained and then used to characterize the proposed weak rock. This paper provides a mean of classifying weak soft rocks despite encountered problems in handling and testing such materials.

2018 ◽  
Vol 53 ◽  
pp. 04021
Author(s):  
SHAO Yong ◽  
LIU Xiao-li ◽  
ZHU Jin-jun

Industrial alkali slag is the discharge waste in the process of alkali production. About one million tons of alkali slag is discharged in China in one year. It is a burden on the environment, whether it is directly stacked or discharged into the sea. If we can realize the use of resources, it is a multi-pronged move, so alkali slag is used to improve solidified marine soft soil in this paper. The test results show that the alkali residue can effectively improve the engineering properties of marine soft soil. Among them, the unconfined compressive strength and compressive modulus are increased by about 10 times, and the void ratio and plasticity index can all reach the level of general clay. It shows that alkali slag has the potential to improve marine soft soil and can be popularized in engineering.


2019 ◽  
Vol 814 ◽  
pp. 399-403
Author(s):  
Anuchit Uchaipichat

This paper presents the relationship between the dynamic cone penetration (DCP) test results and the unconfined compressive strength of lateritic cemented soils. A series of DCP tests and unconfined compressive strength was performed on lateritic cemented soil. The soils sample used in this study was lateritic soil. The test results for the DCP tests are presented in terms of penetration index. It can be observed that the penetration index decreased with increasing curing period and cement content. Moreover, the unconfined compressive strength of cemented soils increased with curing period and cement content. The relationship between unconfined compressive strength and penetration index is presented. A unique relationship for unconfined compressive strength can be obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ping Jiang ◽  
Yewen Chen ◽  
Lin Zhou ◽  
Tianhao Mao ◽  
Wei Wang ◽  
...  

This study investigated the unconfined compressive strength change law of cement modified slurries (CMS) under different curing ages. We conducted unconfined compressive strength tests using slurry and cement as raw materials. The cement contents were 5%, 10%, 15%, 20%, and 25%. The curing ages were 7, 14, 28, 56, 90, 120, 150, and 180 d. A time effect model of CMS strength was established based on the measured UCS strength-curing age and the strength-cement content curves. The test results proved that the UCS of the CMS increased significantly with an increase in the curing age, and after 90 days, the UCS gradually increased to a fixed value. The time effect model better characterized the relationship between the UCS of the CMS and the curing age and the cement content, as the predicted value had a high correlation with the measured value. We conducted scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) tests to analyze the microstructure and chemical composition of the CMS. The microscopic test results demonstrated that the increase of cement content and curing age increased the amount of gelling substances in the CMS and made the overall structure more compact, thereby increasing its macro strength.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012077
Author(s):  
K.S Chamberlin ◽  
M. Rama Rao

Abstract Expansive soils are found in black cotton soils, which swell or shrink in volume when presented to changes in moisture content. Lime treatment is exhaustively used to increment the properties of sensitive and fragile soils. One of the hugest clarifications behind using lime is to decline the developing presentation of the earth soil. The arrangement of extra safeguards improves the reaction of quicklime (CaO) with water, structures hydrated (slaked) lime (Ca (OH)2), and thus earth characteristics. The vast inadequacy of employing lime is growing the deficiency of lime offset earth. Following that, the goal of this study is to see how re-establishing time affects the geotechnical qualities of settled Black cotton soils with lime. These discoveries recommend that adding Lime as a stabilizer works on the strength of black cotton soil. Some of the characteristics of the soil likely to be increased by using stabilizer in this work are UCS (Unconfined Compressive Strength) at different curing periods (7,14,28 and 56 days), CBR (California Bearing Ratio) value at unsoaked and soaked and MDD (Maximum Dry Density) decrease at different lime percentages(%) like 2.4.6.8 and 10. The result showed here untreated soil got stabilized by using the stabilizer in certain extent In this adjustment various rates of cementitious material is added to black cotton soil and directed tests like plasticity, compaction, swell pressure, free swell index(FSI), Coefficient of permeability (k) and CBR(soaked and unsoaked) at various conditions like OMC,OMC+2% water and OMC+5% water, UCS (Unconfined Compressive Strength) was performed. From the test results, it is identified that the stabilization agent decreases plasticity and improves strength characteristics. Addition of stabilizing agent makes the black cotton soil to non-plastic, non-swelling and attains increase CBR values which are greater than 25% for a dosage of 10% lime at OMC but remaining OMC+2%water & OMC+5%water CBR values are not various much difference as per test results. With the addition of lime, the black cotton soil becomes non-plastic, non-swelling, and has high strengths. Treated soils are used as a development material, for example, a subgrade layer in the development of adaptable asphalt pavements for roads.


2021 ◽  
Vol 236 ◽  
pp. 02010
Author(s):  
Yuguo Zhang ◽  
Weijie Zhang ◽  
Xiaojie Shi ◽  
Tai Guo ◽  
Zhenghao Chen

Aiming at the question of improvement expansive soil in Nanyang area, the composite improvement method of lignin and cement was adopted. Based on the unconfined compressive strength test, the variation law of unconfined compressive strength of improved expansive soil with different lignin content, different compaction degree and different curing age was studied. The test results show that the composite of lignin and cement can effectively improve the unconfined compressive strength of expansive soil. The unconfined compressive strength of L-C (lignin and cement) improved expansive soil reaches the maximum when the cement content is fixed at 4% and the lignin content is 1%. The unconfined compressive strength of L-C improved soil increases with the increase of compaction degree and curing age, and the strength growth mainly concentrated in the first 7 days of curing age. From the point of improvement mechanism, the hydration and gelation reaction of cement occur in expansive soil, and gel material with higher strength is formed to enhance the strength of expansive soil. The appropriate amount of lignin can fill the pores between soil particles and make the connection between soil particles more closely, so as to improve the strength of expansive soil.


2011 ◽  
Vol 255-260 ◽  
pp. 2751-2755
Author(s):  
Chun Lei Zhang ◽  
Qing Song Liu ◽  
Jin Bao Liu

In order to improve the bearing capacity of dredged sediment dump pond for succeeding foundation reinforcement construction, upper layer was placed with a layer of cement solidified crust (CSC). For the special double layer foundation, field plate load tests were conducted to study the behaviors of failure mode, deformation and ultimate bearing capacity. Test results show the failure mode of the double layer foundation takes punch failure mode, the settlement around 10-15cm, the failure angle around 33-36 degree, the ultimate bearing capacities have a lineal relationship with the unconfined compressive strength and thickness of CSC, respectively.


2015 ◽  
Vol 77 (11) ◽  
Author(s):  
Fauziah Kasim ◽  
Aminaton Marto ◽  
Nur Amalina Abdul Rahman ◽  
Choy Soon Tan

This study presents the Unconfined Compressive Strength (UCS) and microstructure of clay soil stabilized with locally made Biomass Silica (BS) in the form of SH-85. Since the construction of highway on soft soil raises many problems due to its low strength, understanding about the basic characteristics of soft clay and mixed with BS, play important role for improving the strength of the soft clay. The study carried out had the specific objectives to determine engineering properties of soft clay, to investigate the UCS of soft clay treated with BS and to analyze microstructure of the soft soil treated by BS with respect to various curing periods. In this study, 30 samples of clay soil were prepared under various curing periods (0, 7, 14 and 28 days) and mixed with BS at various percentages (5 %, 7 % and 9 %). The test results show that BS can increase the strength of the clay soil. The 9% BS treated sample for 7 days curing time achieved UCS of 710 kPa. This was approximately 6 times greater than that of untreated soil strength. The highest strength was 1216 kPa at 28 days curing for soil mixed with 9% BS. The images of Scanning Electron Microscopic show that the voids of the clay would filled by the new component resulted by the reaction of BS stabilizer with the natural clay samples. This led to a continuous soil fabric resulting with stronger and denser soil.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Haiping Shi ◽  
Zhongyao Li ◽  
Wenwei Li ◽  
Shaopeng Wang ◽  
Baotian Wang ◽  
...  

Laboratory freezing experiments were conducted to evaluate the effect of polyacrylamide (PAM) and lignocellulose on the mechanical properties and microstructural characteristics of Tibetan clay. Direct shear and unconfined compressive tests and field emission scanning electron microscopy analyses were performed on clay samples with different contents of stabilizers. The test results show that the addition of PAM can improve the unconfined compressive strength and cohesion of Tibetan clay, but an excessive amount of PAM reduces the internal friction angle. After several freeze-thaw cycles, the unconfined compressive strength and cohesion of samples stabilized by PAM decrease significantly, while the internal friction angle increases. Samples stabilized by PAM and lignocellulose have higher internal friction angles, cohesion, and unconfined compressive strength and can retain about 80% of the original strength after 10 freeze-thaw cycles. PAM fills the pores between soil particles and provides adhesion. The addition of lignocellulose can form a network, restrict the expansion of pores caused by freeze-thaw cycles, and improve the integrity of PAM colloids. It is postulated that the addition of a composite stabilizer with a PAM content of 0.4% and a lignocellulose content of 2% may be a technically feasible method to increase the strength of Tibetan clay.


Author(s):  
Timothy D. Stark ◽  
Ahmed K. Baghdady ◽  
Abdolreza Osouli ◽  
Heather Shoup ◽  
Michael A. Short

Standard penetration tests (SPTs) have been used to estimate strength parameters of soils and weak rocks when it is difficult to obtain high-quality samples for laboratory shear testing. SPTs require 45 cm (18 in.) of split-spoon sampler penetration to determine the blowcounts per 0.3 m (1 ft), which is difficult to impossible to obtain in weak rock, that is, intermediate geomaterials. As a result, a modified SPT is presented here for sampler penetrations less than 45 cm (18 in.) in weak rocks. This new procedure is termed the modified standard penetration test (MSPT) and uses the penetration rate, not the sum of penetration blowcounts per 0.3 m, to estimate the unconfined compressive strength for the design of drilled shafts in weak fine-grained rocks. The penetration rate is the inverse of the linear slope of the penetration depth versus blowcount relationship. With this new test and interpretation procedure, 45 cm (18 in.) of sampler penetration is no longer required to estimate the unconfined compressive strength of weak rocks. An empirical correlation between MSPT penetration rate and laboratory-measured unconfined compressive strength is presented here for weak Illinois shale. This correlation could be used to estimate the unconfined compressive strength for the design of drilled shafts in weak rocks.


Sign in / Sign up

Export Citation Format

Share Document