scholarly journals The adsorption characteristics of Cu(II) and Zn(II) on the sediments at the mouth of a typical urban polluted river in Dianchi Lake: taking Xinhe as an example

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiang-shu Ma ◽  
Leng Liu ◽  
Yi-chuan Fang ◽  
Xiao-long Sun

AbstractThis study is to determine the spatial distribution characteristics of Cu and Zn adsorption on the sediments of the estuary of Dianchi Lake, as well as the composite adsorption law of Cu and Zn on combinations of sediment organic matter, metal oxides, and organic–inorganic composites. The relationship between the adsorption contribution of each component of the substance. A static adsorption experiment was applied to the sediments in the estuary of Dianchi Lake. The relationship between adsorption capacity and sediment composition was analyzed through correlation analysis and redundant analysis. The results show that along the direction of the river flow and the vertical depth, the adsorption capacity presents a relatively obvious spatial distribution law; the change trend of sediment component content is not the same as the change trend of Cu and Zn adsorption capacity. The change trend of the sediment component content is not the same as the change trend of the adsorption amount of Cu and Zn, and the compound effect between the components affects the adsorption amount. The adsorption of Cu by the four groups of sediments after different treatments is more in line with the Freundlich isotherm adsorption model; When adsorbing Zn, the untreated and removed organic matter and iron-aluminum oxide group are in good agreement with the Freundlich model, while the organic matter-removed group and the iron-aluminum oxide removal group are more consistent with the Langmuir isotherm adsorption model; The adsorption contribution rate of organic–inorganic composites in sediments is not a simple addition of organic matter and iron-aluminum oxides, but a more complex quantitative relationship.

2021 ◽  
Author(s):  
Xiang-shu Ma ◽  
Leng Liu ◽  
Yi-chuan Fang ◽  
Xiao-long Sun

Abstract This study was conducted to determine the spatial distribution characteristics of Cu and Zn adsorption on the sediments of the estuary of Dianchi Lake, as well as the adsorption laws of Cu and Zn on combinations of sediment organic matter, metal oxides, and organic-inorganic composites.A static adsorption experiment was applied to four groups of sediments from the estuary of Dianchi Lake, and results were generated through correlation analysis and redundancy analysis. The four groups were as follows: (1) Untreated, Group A, (2) Organic matter removed, Group B, (3) Iron and aluminium oxide removed, Group C, (4) Organic matter and iron and aluminium oxide removed, Group D. The adsorption capacity was correlated with the spatial distribution along the direction of river flow and vertical depth. High contents of various components of the sediment did not correlate with high adsorption capacities for Cu and Zn, according to the use of four groups of sediments subjected to different treatment processes. The adsorption of Cu fit the Freundlich isotherm adsorption model for all four sediment groups. For Zn adsorption, the untreated and removed organic matter and Fe-Al oxide groups were in good agreement with the Freundlich model, while the removed organic matter and removed Fe-Al oxide groups were in good agreement with the Langmuir isothermal adsorption model. The results indicate that there is a quantitative relationship between the adsorption of heavy metals and organic and inorganic complexes in sediments.


2019 ◽  
Vol 22 (6) ◽  
pp. 242-249 ◽  
Author(s):  
Yati B. Yuliyati ◽  
Solihudin Solihudin ◽  
Atiek Rostika Noviyanti

Reactive groups such as silanol, hydroxyl, and carbonyl groups in silica-lignin composites play a role in binding to chromium(VI) ions. The activation of functional groups in silica-lignin can be increased by the addition of an activator such as sodium periodate, which can also oxidize the lignin monomer (guaiasil) to ortho-quinone. This study aimed to obtain silica-lignin composites from rice husks activated by sodium periodate with a high surface area. Composite absorption was tested on chromium(VI) adsorption. Silica-lignin isolation was carried out by using the sol-gel method at concentrations of sodium hydroxide 5, 10, 15, and 20% (b/b). Silica-lignin activated with sodium periodate 10% (b/b) had the smallest particle size of about 8μm, with a surface area of 14.0888 m2.g-1 and followed Halsey isotherm adsorption model, with an adsorption capacity of 0.3054 mg.g-1.


2015 ◽  
Vol 1101 ◽  
pp. 290-293
Author(s):  
Rika Wulandari ◽  
Jumina ◽  
Dwi Siswanta

The adsorption of Remazol by CEMPCRP was studied as a function of pH, contact time and concentration. All experiments were carried out using the batch method. The initial and final RBBR concentration were determinated using UV-Vis spectrometer at λ = 592.3 nm. The result showed that the optimum condition of RBBR adsorption were at pH 10, contact time 360 min, and concentration of 300 mg/L. This adsorption followed the Lagergren (first pseudo order) and Langmuir isotherm adsorption model. The adsorption capacity was obtained 6.51 x 10-5 mol/L and the mechanism is a chemisorption (ΔG = 28.92 kJ/mol) that occurs in the monolayer.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 398-410
Author(s):  
Zhaoying Sun ◽  
Tao Feng ◽  
Zhihui Zhou ◽  
Hongdan Wu

Abstract The polyacrylonitrile (PAN) nanofiber membrane prepared by the electrospinning technology was used as the matrix, and β-cyclodextrin (β-CD) was introduced into it to synthesize the composite nanofiber membrane. Taking methylene blue as the object, the adsorption performance of nanofiber membranes for dyes in the aqueous solution was studied. The structure, morphology, and specific surface area of the nanofiber membrane were characterized using FTIR, SEM, BET, XRD, and EDS. Meantime, the adsorption equilibrium was also explored. After being modified by cyclodextrin, a large number of cavity structures and hydrophobic binding sites were provided for the nanofiber membrane, and the adsorption performance was significantly improved. The results showed that the maximum adsorption capacity of the PAN/β-CD blend nanofiber membrane (at 25℃) for methylene blue was 108.66 mg g−1. The effects of pH, adsorption time, ion concentration, and adsorbent dosage on the adsorption capacity were also investigated. In addition, by fitting with the adsorption model, the adsorption process was more complex with the quasi-secondary adsorption kinetics and Langmuir isotherm adsorption model.


2014 ◽  
Vol 70 (1) ◽  
pp. 89-94 ◽  
Author(s):  
Eko Siswoyo ◽  
Nozomi Endo ◽  
Yoshihiro Mihara ◽  
Shunitz Tanaka

A low cost and environmentally friendly adsorbent was developed based on leaf of platanus sp. to adsorb cadmium ion in water. The adsorbent was modified with citric acid and then also encapsulated in agar for easy separation after the adsorption process. Parameters such as adsorbent dose, stirring time, solution pH and modification of the adsorbent with citric acid were investigated in a batch experiment in order to determine the optimum condition for Cd (II) adsorption. Based on the Langmuir isotherm adsorption model, the adsorption capacity of cadmium ion for raw adsorbent, modified adsorbent with citric acid and encapsulated adsorbent were 3.69, 15.31 and 6.89 mg/g, respectively. The high adsorption capacity after treatment with citric acid may be due to the increase in carboxylic content of the adsorbent surface and also the increase of surface area and pore volume of the adsorbent. With this high adsorption capacity for cadmium ion and an abundance of raw materials, this bio-adsorbent could be considered as a low cost adsorbent in the near future.


Author(s):  
Shangbin Chen ◽  
Chu Zhang ◽  
Xueyuan Li ◽  
Yingkun Zhang ◽  
Xiaoqi Wang

AbstractIn shale reservoirs, the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane. However, in the process of thermal evolution, the adsorption characteristics of methane in multi type and multi-scale organic matter pores have not been sufficiently studied. In this study, the molecular simulation method was used to study the adsorption characteristics of methane based on the geological conditions of Longmaxi Formation shale reservoir in Sichuan Basin, China. The results show that the characteristics of pore structure will affect the methane adsorption characteristics. The adsorption capacity of slit-pores for methane is much higher than that of cylindrical pores. The groove space inside the pore will change the density distribution of methane molecules in the pore, greatly improve the adsorption capacity of the pore, and increase the pressure sensitivity of the adsorption process. Although the variation of methane adsorption characteristics of different shapes is not consistent with pore size, all pores have the strongest methane adsorption capacity when the pore size is about 2 nm. In addition, the changes of temperature and pressure during the thermal evolution are also important factors to control the methane adsorption characteristics. The pore adsorption capacity first increases and then decreases with the increase of pressure, and increases with the increase of temperature. In the early stage of thermal evolution, pore adsorption capacity is strong and pressure sensitivity is weak; while in the late stage, it is on the contrary.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Weidong Xie ◽  
Meng Wang ◽  
Hongyue Duan

Adsorbed gas is one of the crucial occurrences in shale gas reservoirs; thus, it is of great significance to ascertain the adsorption capacity of shale and the adsorption characteristics of CH4. In this investigation, the Taiyuan–Shanxi Formations’ coal-measure shale gas reservoir of the Carboniferous–Permian era in the Hedong Coalfield was treated as the research target. Our results exhibit that the shale samples were characterized by a high total organic carbon (TOC) and over to high-over maturity, with an average TOC of 2.45% and average Ro of 2.59%. The mineral composition was dominated by clay (62% on average) and quartz (22.45% on average), and clay was mainly composed of kaolinite and illite. The Langmuir model showed a perfect fitting degree to the experimental data: VL was in the range of 0.01 cm3/g to 0.77 cm3/g and PL was in the range of 0.23–8.58 MPa. In addition, the fitting degree depicted a linear negative correlation versus TOC, while mineral composition did not exhibit a significant effect on the fitting degree, which was caused by the complex pore structure of organic matter, and the applicability of the monolayer adsorption theory was lower than that of CH4 adsorption on the mineral’s pore surface. An apparent linear positive correlation of VL versus the TOC value was recorded; furthermore, the normalized VL increased with the growth of the total content of clay mineral (TCCM), decreased with the growth of the total content of brittle mineral (TCBM), while there was no obvious correlation of normalized VL versus kaolinite, illite and quartz content. The huge amount of micropores and complex internal structure led to organic matter possessing a strong adsorption capacity for CH4, and clay minerals also promoted adsorption due to the development of interlayer pores and intergranular pores.


2015 ◽  
Vol 5 (1) ◽  
pp. 45
Author(s):  
Tchuifon Tchuifon Donald Raoul ◽  
Nche George Ndifor-Angwafor ◽  
Ngakou Sadeu Christian ◽  
Kamgaing Théophile ◽  
Ngomo Horace Manga ◽  
...  

<p>The present study is based on the adsorption of cadmium (II) ions on rice husk and egussi peeling, unmodified and modified with nitric acid in aqueous solution, using batch technique. It was carried out as a function of contact time, dosage, pH and initial concentration. The equilibrium time was achieved within 25 minutes for unmodified rice husk (Glu NT) and 20 minutes for unmodified egussi peeling (Cuc NT) with an adsorbed quantity of 13.18 mg/g. In the case of modified materials, we obtained 15 minutes for modified rice husk (Glu HNO3) and 10 minutes for modified egussi peeling (Cuc HNO3) with an adsorbed quantity of 18.77 mg/g. The maximum biosorption occurred at pH 5.5 for all biosorbents. The adsorbent mass for maximum adsorption was 0.4 g giving an adsorption capacity of 62.02 % for unmodified adsorbents. In the case of modified adsorbents, the minimal mass at which maximum adsorption occurred was 0.4 g giving an adsorption capacity of 98.33 % and 0.6 g giving an adsorption capacity of 98.33 % for modified rice husk and egussi peeling respectively. The adsorbent/adsorbate equilibrium was well described by the pseudo-second order kinetic model and by Langmuir’s and Freundlich adsorption model. This models showed that the adsorption of cadmium (II) is a chemisorption process.</p>


2011 ◽  
Vol 64 (1) ◽  
pp. 255-262 ◽  
Author(s):  
M. Saulais ◽  
J. P. Bedell ◽  
C. Delolme

Infiltration basins are shallow reservoirs in which stormwater is temporarily collected in order to reduce water volume in downstream networks. The settling of stormwater particles leads to a contaminated sediment layer. Wild plants can colonize these basins and can also play a role on the fate of heavy metals either directly by their uptake or indirectly by modification of physico-chemical characteristics of the sediment and therefore by modification of the mobility of heavy metals. The aim of this study, carried out in a vegetated infiltration basin, is to assess Cd, Cu and Zn mobility in two zones colonized by different species, Phalaris arundinacea and Typha latifolia. The study was carried out using three single chemical extractions: CaCl2 for the exchangeable phase, acetate buffer for the acido-soluble fraction and diethylenetriamine-pentaacetic acid (DTPA) for the fraction associated to the organic matter. Zn and Cd are mainly associated to carbonated and organic matter phases of the sediment. Moreover, acetate buffer-extractable Zn contents are strongly correlated to carbonates content in the sediment. DTPA-extractable Cu contents are strongly correlated with organic carbon sediment contents. We have also noted that extractable contents were significantly different between both zones whatever the metal.


Sign in / Sign up

Export Citation Format

Share Document