scholarly journals Melting temperature of ice and total gas content of water at the ice-water interface above subglacial Lake Vostok

2021 ◽  
Vol 67 (4) ◽  
pp. 348-367
Author(s):  
V. Ya. Lipenkov ◽  
A. V. Turkeev ◽  
N. I. Vasilev ◽  
A. A. Ekaykin ◽  
E. V. Poliakova

It is generally assumed that the gas composition and the total gas content of Lake Vostok’s water are, to a large extent, governed by the budget of atmospheric gases entering the lake together with glacier ice melt, mostly in its northern part. Since the ice accretion that prevails in the south of the lake leads to the exclusion of gases during the freezing process, these gases can build up in the lake water. Earlier theoretical works [2, 3] have demonstrated that about 30 water residence times are required to attain equilibrium between gases in solution and those in a hydrate phase, which sets the upper bounds of concentrations of nitrogen and oxygen dissolved in sub-ice water (~2.7 g N2 L–1 and ~0.8 g O2 L–1). Here we attempt to estimate the real gas content of the lake water based on the link between the pressure melting temperature of ice and the concentration of gases dissolved in the liquid phase [2]. We use the stacked borehole temperature profile extended to 3753 m depth and the measurements of temperature of sub-ice water that entered the borehole after the second unsealing of Lake Vostok to estimate the melting temperature of ice (–2.72 ± 0.1 °C) at the ice sheet-lake interface (depth 3758.6 ± 3 m, pressure 33.78 ± 0.05 MPa). The gas content of the near-surface layer of lake that corresponds to this melting temperature is calculated to be 2.23 g.L–1, meaning that the concentration of dissolved oxygen must be as high as 0.53 g.L–1, i. e. one-two orders of magnitude higher than in any other known water bodies on our planet. The inferred gas content of sub-ice water is, by a factor of 1.6, lower than the maximal solubility of air in water in equilibrium with air hydrate, though it is still higher, by a factor of 19, than the total air content of melting glacier ice. The relatively low concentration of dissolved air in the near-surface layer of the lake revealed in this study provides a new experimental constraint for understanding the gas distribution in Lake Vostok as affected by the circulation and mixing of water beneath the ice sheet.

1999 ◽  
Vol 28 ◽  
pp. 277-281 ◽  
Author(s):  
R. D. Lorrain ◽  
S. J. Fitzsimons ◽  
M. J. Vandergoes ◽  
M. Stiévenard

AbstractEntrainment of debris by cold-based glaciers having basal temperatures as low as — 17°C can be observed in the Dry Valleys of south Victoria Land, Antarctica. The classical models developed to explain debris incorporation at the glacier base are inappropriate in such cases, since the basal temperature is well below the freezing point. An alternative model, based on the presence of ice-marginal lakes, has recently been proposed by one of the authors (S. F.). In this model, transient wet-base conditions can occur as ice flows onto the unfrozen sediments of the lake bottom, creating conditions favorable to the entrainment of sediments and to ice accretion by water freezing.Here we describe a situation where this model is consistent with an ice-composition study of the basal part of Suess Glacier, Taylor Valley. The stable isotope composition indicates that water freezing, most probably lake water, plays a major role in the formation of the basal ice layers. Total gas content of this basal ice is considerably depleted when compared to meteoric glacier ice, in accordance with a rejection mechanism during freezing. Its gas composition, strongly enriched in CO2, is also indicative of the presence of a former liquid phase.


2005 ◽  
Vol 29 (2) ◽  
pp. 156-170 ◽  
Author(s):  
Martin J. Siegert

The history of Lake Vostok, the huge East Antarctic subglacial lake, is critical to the unique biota expected in this extreme environment. One theory is that the lake existed prior to the mid-Miocene glaciation of the continent at around 15 million years ago, survived the subsequent period of ice growth intact, and then remained relatively stable beneath its thick ice cover to the present day. The alternative is that the lake was formed by subglacial water flow into an existing and/or glacially eroded trough after the ice sheet reached its present configuration. Here, the onset of persistent ice cover in Antarctica is reviewed and a simple model for continental ice growth discussed. This information is used to argue against the preglacial origin of subglacial lakes. Lake Vostok is large because ice flows essentially perpendicular to the trough’s long axis, permitting the slopes of the ice surface and the ice-water interface to be low. During the onset of glaciation ice flow across Lake Vostok would have been more akin to flow across an ice marginal trough such as the Astrolabe Subglacial Basin, which holds the thickest ice in Antarctica: 4776 m where the bed is over 2 km below the sea level. Hence, regardless of whether Lake Vostok was a lake prior to glaciation, its trough is likely to have been occupied by grounded ice during the period of ice growth. Although the lake is stable today, its size and extent will be affected by ice sheet changes that occur over glacial-interglacial cycles. Such changes are reviewed and the potential consequences for the lake’s volume are discussed.


2018 ◽  
Vol 12 (3) ◽  
pp. 955-970 ◽  
Author(s):  
Matthew G. Cooper ◽  
Laurence C. Smith ◽  
Asa K. Rennermalm ◽  
Clément Miège ◽  
Lincoln H. Pitcher ◽  
...  

Abstract. We document the density and hydrologic properties of bare, ablating ice in a mid-elevation (1215 m a.s.l.) supraglacial internally drained catchment in the Kangerlussuaq sector of the western Greenland ice sheet. We find low-density (0.43–0.91 g cm−3, μ = 0.69 g cm−3) ice to at least 1.1 m depth below the ice sheet surface. This near-surface, low-density ice consists of alternating layers of water-saturated, porous ice and clear solid ice lenses, overlain by a thin (< 0.5 m), even lower density (0.33–0.56 g cm−3, μ = 0.45 g cm−3) unsaturated weathering crust. Ice density data from 10 shallow (0.9–1.1 m) ice cores along an 800 m transect suggest an average 14–18 cm of specific meltwater storage within this low-density ice. Water saturation of this ice is confirmed through measurable water levels (1–29 cm above hole bottoms, μ = 10 cm) in 84 % of cryoconite holes and rapid refilling of 83 % of 1 m drilled holes sampled along the transect. These findings are consistent with descriptions of shallow, depth-limited aquifers on the weathered surface of glaciers worldwide and confirm the potential for substantial transient meltwater storage within porous low-density ice on the Greenland ice sheet ablation zone surface. A conservative estimate for the  ∼  63 km2 supraglacial catchment yields 0.009–0.012 km3 of liquid meltwater storage in near-surface, porous ice. Further work is required to determine if these findings are representative of broader areas of the Greenland ice sheet ablation zone, and to assess the implications for sub-seasonal mass balance processes, surface lowering observations from airborne and satellite altimetry, and supraglacial runoff processes.


Author(s):  
Vladimir Ya. Lipenkov ◽  
Alexey A. Ekaykin ◽  
Ekaterina V. Polyakova ◽  
Dominique Raynaud

Deep drilling at the Vostok Station has reached the surface of subglacial Lake Vostok (LV) twice—in February 2012 and January 2015. As a result, three replicate cores from boreholes 5G-1, 5G-2 and 5G-3 became available for detailed and revalidation analyses of the 230 m thickness of the accreted ice, down to its contact with water at 3769 m below the surface. The study reveals that the concentration of gases in the lake water beneath Vostok is unexpectedly low. A clear signature of the melt water in the surface layer of the lake, which is subject to refreezing on the icy ceiling of LV, has been discerned in the three different properties of the accreted ice: the ice texture, the isotopic and the gas content of the ice. These sets of data indicate in concert that poor mixing of the melt (and hydrothermal) water with the resident lake water and pronounced spatial and/or temporal variability of local hydrological conditions are likely to be the characteristics of the southern end of the lake. The latter implies that the surface water may be not representative enough to study LV's behaviour, and that direct sampling of the lake at different depths is needed in order to move ahead with our understanding of the lake's hydrological regime.


2013 ◽  
Vol 58 (2) ◽  
pp. 142-150 ◽  
Author(s):  
A.V. Sachenko ◽  
◽  
V.P. Kostylev ◽  
V.G. Litovchenko ◽  
V.G. Popov ◽  
...  

2021 ◽  
pp. 105676
Author(s):  
Wuying Zhang ◽  
Yetang Wang ◽  
Paul C.J.P. Smeets ◽  
Carleen H. Reijmer ◽  
Baojuan Huai ◽  
...  

2004 ◽  
Vol 39 ◽  
pp. 495-500 ◽  
Author(s):  
Mauro Guglielmin ◽  
Hugh M. French

AbstractThis progress report classifies the different types of ground-ice bodies that occur in the Northern Foothills, northern Victoria Land, Antarctica. Oxygen isotope variations are presented, but interpretation is kept to a minimum pending further investigations. Surface ice, as distinct from moving glacier ice, occurs in the form of widespread buried (‘dead’) glacier ice lying beneath ablation (sublimation) till, together with perennial lake ice, snow banks and icing-blister ice.’Dry’ permafrost is uncommon, and interstitial ice is usually present at the base of the active layer and in the near-surface permafrost. This probably reflects the supply of moisture from the Ross Sea and limited sublimation under today’s climate. Intrusive ice occurs as layers within perennial lake-ice covers and gives rise to small icing blisters. Small ice wedges found beneath the furrows of high-centered polygons appear to agree with the model of sublimation-till development proposed by Marchant and others (2002).


2002 ◽  
Vol 48 (161) ◽  
pp. 177-191 ◽  
Author(s):  
Jean-Louis Tison ◽  
Christian Haas ◽  
Marcia M. Gowing ◽  
Suzanne Sleewaegen ◽  
Alain Bernard

AbstractDuring an ice-tank experiment, samples were taken to study the processes of acquisition and alteration of the gas properties in young first-year sea ice during a complete growth–warming–cooling cycle. The goal was to obtain reference levels for total gas content and concentrations of atmospheric gases (O2, N2, CO2) in the absence of significant biological activity. The range of total gas-content values obtained (3.5–18 mL STP kg−1) was similar to previous measurements or estimates. However, major differences occurred between current and quiet basins, showing the role of the water dynamics at the ice–water interface in controlling bubble nucleation processes. Extremely high CO2concentrations were observed in all the experiments (up to 57% in volume parts). It is argued that these could have resulted from two unexpected biases in the experimental settings. Concentrations in bubbles nucleated at the interface are controlled by diffusion both from the ice–water interface towards the well-mixed reservoir and between the interface water and the bubble itself. This double kinetic effect results in a transition of the gas composition in the bubbles from values close to solubility in sea water toward values close to atmospheric, as the ice cover builds up.


Author(s):  
T. M Kyrke-Smith ◽  
R. F Katz ◽  
A. C Fowler

Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice–water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model.


Sign in / Sign up

Export Citation Format

Share Document