scholarly journals Modeling the dynamics of Lassa fever in Nigeria

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Mayowa M. Ojo ◽  
B. Gbadamosi ◽  
Temitope O. Benson ◽  
O. Adebimpe ◽  
A. L. Georgina

AbstractLassa fever is a zoonotic disease spread by infected rodents known as multimammate rats. The disease has posed a significant and major health challenge in West African countries, including Nigeria. To have a deeper understanding of Lassa fever epidemiology in Nigeria, we present a deterministic dynamical model to study its dynamical transmission behavior in the population. To mimic the disease’s biological history, we divide the population into two groups: humans and rodents. We established the quantity known as reproduction number $${\mathcal {R}}_{0}$$ R 0 . The results show that if $${\mathcal {R}}_{0} <1$$ R 0 < 1 then the system is stable, otherwise it is unstable. The model fitting was performed using the nonlinear least square method on cumulative reported cases from Nigeria between 2018 and 2020 to obtain the best fit that describes the dynamics of this disease in Nigeria. In addition, sensitivity analysis was performed, and the numerical solution of the system was derived using an iterative scheme, the fifth-order Runge–Kutta method. Using different numeric values for each parameter, we investigate the effect of all highest sensitivity indices’ parameters on the population of infected humans and infected rodents. Our findings indicate that any control strategies and methods that reduce rodent populations and the risk of transmission from rodents to humans and rodents would aid in the population’s control of Lassa fever.

2015 ◽  
Vol 734 ◽  
pp. 877-886
Author(s):  
Yi Long Zhang ◽  
Xue Guang Zhang

This paper proposed the Weighted Least Square method (WLS method) to identify the output filter of three-phase PWM converter, which incorporates the signal processing as well as mathematical techniques into conventional Least Square method. It sets different weights to different measurements according to the phase where it locates, based on the discovery of the correlation between accuracy and phase of current. The algorithm is tested in both simulation and experimental environment, and the results validate that proposed method gives accurate estimation in steady state, and can response within 10ms in when grid voltage drops. This method can work under both balanced and unbalanced operating conditions, therefore provides a powerful tool for various control strategies to better understand the operating conditions. Compared with the invasive method, which intentionally inject a series of white noise in the system, proposed WLS method does not bring any turbulence, while compared with conventional Least Square method, it possesses better stability as well as higher accuracy.


2017 ◽  
Vol 6 (3) ◽  
Author(s):  
Trushit Patel ◽  
Ramakanta Meher

AbstractIn this paper, we consider a Roseland approximation to radiate heat transfer, Darcy’s model to simulate the flow in porous media and finite-length fin with insulated tip to study the thermal performance and to predict the temperature distribution in a vertical isothermal surface. The energy balance equations of the porous fin with several temperature dependent properties are solved using the Adomian Decomposition Sumudu Transform Method (ADSTM). The effects of various thermophysical parameters, such as the convection-conduction parameter, Surface-ambient radiation parameter, Rayleigh numbers and Hartman number are determined. The results obtained from the ADSTM are further compared with the fourth-fifth order Runge-Kutta-Fehlberg method and Least Square Method(LSM) (Hoshyar et al. 2016 [


2021 ◽  
pp. 1-14
Author(s):  
Mujie Zhao ◽  
Tao Zhang ◽  
Di Wang

Aiming at the nonlinear filter problem in Ultra Wide Band (UWB) navigation and position, a high-order Unscented Kalman Filter (UKF) position method is proposed. On the one hand, the position and velocity are used as state variables to establish a nonlinear filtering model based on UWB position system. On the other hand, based on the fifth order cubature transform (CT), the analytical solution of the high-order unscented Kalman filter is obtained by introducing a free parameter δ. To verify the effectiveness of the proposed method, the Time of Arrival (TOA) location method, the least square method and fifth order CKF method are introduced as comparison methods. The simulation and experimental results show that the proposed high-order UKF method has good positioning accuracy in both static and dynamic UWB positioning methods.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
M. Radha ◽  
S. Balamuralitharan

Abstract This paper deals with a general SEIR model for the coronavirus disease 2019 (COVID-19) with the effect of time delay proposed. We get the stability theorems for the disease-free equilibrium and provide adequate situations of the COVID-19 transmission dynamics equilibrium of present and absent cases. A Hopf bifurcation parameter τ concerns the effects of time delay and we demonstrate that the locally asymptotic stability holds for the present equilibrium. The reproduction number is brief in less than or greater than one, and it effectively is controlling the COVID-19 infection outbreak and subsequently reveals insight into understanding the patterns of the flare-up. We have included eight parameters and the least square method allows us to estimate the initial values for the Indian COVID-19 pandemic from real-life data. It is one of India’s current pandemic models that have been studied for the time being. This Covid19 SEIR model can apply with or without delay to all country’s current pandemic region, after estimating parameter values from their data. The sensitivity of seven parameters has also been explored. The paper also examines the impact of immune response time delay and the importance of determining essential parameters such as the transmission rate using sensitivity indices analysis. The numerical experiment is calculated to illustrate the theoretical results.


Author(s):  
Youssef Baba ◽  
Mostafa Bouzi

n this paper, a study on modeling of a piezoelectric transducer type rotary traveling wave ultrasonic motor (USM) is presented. First a mathematical model and numerical simulation results are achieved. The model is based on the theory of piezoelectricity and physic theory. An experimental model is worked out and compared to the numerical model. The influence of the temperature on characteristics such as the rotational speed of the motor is considered. The speed of the USM is measured at temperature between 17°Cand 50°C. To develop suitable control strategies for the drive, a fuzzy model type Takagi-Sugeno is used. The unknown parameters of the output membership functions are determined by least square method. Experimental data are used to examine the validity of the fuzzy model. Comparison between experimental and calculated data of the fuzzy model indicates that the fuzzy model can well describe the nonlinear characteristics among the frequency of driving voltage and rotating speed.


1981 ◽  
Vol 20 (06) ◽  
pp. 274-278
Author(s):  
J. Liniecki ◽  
J. Bialobrzeski ◽  
Ewa Mlodkowska ◽  
M. J. Surma

A concept of a kidney uptake coefficient (UC) of 131I-o-hippurate was developed by analogy from the corresponding kidney clearance of blood plasma in the early period after injection of the hippurate. The UC for each kidney was defined as the count-rate over its ROI at a time shorter than the peak in the renoscintigraphic curve divided by the integral of the count-rate curve over the "blood"-ROI. A procedure for normalization of both curves against each other was also developed. The total kidney clearance of the hippurate was determined from the function of plasma activity concentration vs. time after a single injection; the determinations were made at 5, 10, 15, 20, 30, 45, 60, 75 and 90 min after intravenous administration of 131I-o-hippurate and the best-fit curve was obtained by means of the least-square method. When the UC was related to the absolute value of the clearance a positive linear correlation was found (r = 0.922, ρ > 0.99). Using this regression equation the clearance could be estimated in reverse from the uptake coefficient calculated solely on the basis of the renoscintigraphic curves without blood sampling. The errors of the estimate are compatible with the requirement of a fast appraisal of renal function for purposes of clinical diagknosis.


2015 ◽  
Vol 5 (2) ◽  
pp. 1
Author(s):  
Miftahol Arifin

The purpose of this research is to analyze the influence of knowledge management on employee performance, analyze the effect of competence on employee performance, analyze the influence of motivation on employee performance). In this study, samples taken are structural employees PT.centris Kingdom Taxi Yogyakarta. The analysis tool in this study using multiple linear regression with Ordinary Least Square method (OLS). The conclusion of this study showed that the variables of knowledge management has a significant influence on employee performance, competence variables have an influence on employee performance, motivation variables have an influence on employee performance, The analysis showed that the variables of knowledge management, competence, motivation on employee performance.Keywords: knowledge management, competence, motivation, employee performance.


2020 ◽  
Vol 1 (1) ◽  
pp. 128-140 ◽  
Author(s):  
Mohammad Hatami ◽  
◽  
D Jing ◽  

In this study, two-phase asymmetric peristaltic Carreau-Yasuda nanofluid flow in a vertical and tapered wavy channel is demonstrated and the mixed heat transfer analysis is considered for it. For the modeling, two-phase method is considered to be able to study the nanoparticles concentration as a separate phase. Also it is assumed that peristaltic waves travel along X-axis at a constant speed, c. Furthermore, constant temperatures and constant nanoparticle concentrations are considered for both, left and right walls. This study aims at an analytical solution of the problem by means of least square method (LSM) using the Maple 15.0 mathematical software. Numerical outcomes will be compared. Finally, the effects of most important parameters (Weissenberg number, Prandtl number, Brownian motion parameter, thermophoresis parameter, local temperature and nanoparticle Grashof numbers) on the velocities, temperature and nanoparticles concentration functions are presented. As an important outcome, on the left side of the channel, increasing the Grashof numbers leads to a reduction in velocity profiles, while on the right side, it is the other way around.


Sign in / Sign up

Export Citation Format

Share Document