Dynamics governing the response of tidal current along the mouth of Jiaozhou Bay to land reclamation

2015 ◽  
Vol 120 (4) ◽  
pp. 2958-2972 ◽  
Author(s):  
Lei Lin ◽  
Zhe Liu ◽  
Lian Xie ◽  
Huiwang Gao ◽  
Zhongya Cai ◽  
...  
2009 ◽  
Vol 8 (2) ◽  
pp. 71-74
Author(s):  
Feng Yu ◽  
Yong Yin

This paper proposes an approach to implement the 3D visualization of oil spill based on tidal hydrodynamic model. It simulates tidal current of M2 component tide in Jiaozhou Bay. The simulation results conform to the tidal theory and probably conform to the flow measurement report of crude oil pier Phase III at Qingdao Harbor. Based on tidal current and eye-point related adaptive ocean surface mesh model, by analyzing the drift and diffusion mathematical models of oil spill on the sea, the dynamic visualization of drift and diffusion course of oil on the sea were implemented, the visualization result is satisfactory.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chunyang Xu ◽  
Chunyan Zhou ◽  
Kao Ma ◽  
Peng Wang ◽  
Xihe Yue

Jiaozhou Bay (JZB), located at Qingdao City, north China, is a semi-enclosed shallow bay that has undergone large-scale land reclamation and is suffering from a deteriorated water environment. Long-term evolution of JZB with respect of coastline, tidal prism, tidal dynamics, water-exchange capacity, and pollutant transport from 1863 to 2020 was investigated in this paper, using remote sensing images, historical charts, and a numerical model. The JZB was predominated by natural evolution from 1863 to 1935, during which the coastline barely changed. Thereafter, human intervention became intense and more and more natural tidal flats were replaced by salt ponds, aquaculture area, and reclamation very quickly. As a result, tidal prism, area of tidal flats, and area of JZB decreased sharply by 0.290 km3, 182 km2, and 223 km2, respectively, from 1935 to 2020, corresponding to annual decreasing rates being of 123 times, 10 times, 12 times, respectively, as that of before 1935. A numerical model showed that the residual current in JZB tended to be weaker due to the change of coastline and bathymetry, which is not favoring the water-exchange and pollutant transport, especially in the northeast of JZB. The basin residence time increased from 15.5 days in 1935 to 17.6 days in 2020, because of weaker residual tidal current and smaller tidal prism. Local residence time increased significantly near the area with large land reclamation, especially in the northeast and west of JZB. Distribution of dissolved inorganic nitrogen (DIN), in each year, which is the dominant pollutant in JZB, indicated higher DIN concentration and weaker transport along with reclamation. The research on JZB evolution over the last 150 years can provide useful suggestions for the decision-makers of the local government to improve the marine ecosystem. The systematic method to investigate long-term water environment evolution of JZB can be used to study other semi-closed bays.


2014 ◽  
Vol 151 ◽  
pp. 285-294 ◽  
Author(s):  
Guan Dong Gao ◽  
Xiao Hua Wang ◽  
Xian Wen Bao

2019 ◽  
Vol 2 (1) ◽  
pp. 126-144 ◽  
Author(s):  
Jiyun Zhang ◽  
Dehai Song ◽  
Wen Wu ◽  
Xianwen Bao

Using numerical modelling, we study changes in tidal dynamics in Daya Bay (DYB) between 1989 and 2014. During this period, a total water area of 30 km2 was reclaimed and the average water depth increased by 38 cm. As DYB is a sexta-diurnal tidal resonant bay, the sexta-diurnal tides respond differently to the coastline and bathymetry changes than other tides. Taking K1, M2, M4, and M6 as examples, model results show a decrease in tidal elevation amplitude, tidal current magnitude, and tidal energy flux for K1, M2, and M4 tides. For the M6 tide, however, the model predicted an increase in tidal elevation amplitude, tidal current magnitude in some parts of the bay, and the tidal energy flowing into the bay. Land reclamation leads to the enhancement of sexta-diurnal tidal resonance and thus the magnitude of the M6 tide. Furthermore, due to the magnification of M6, tidal duration asymmetry in DYB changed from ebb-dominance to flood-dominance, and water exchange became much more active. Therefore, owing to the sexta-diurnal tidal resonance, the impact of human activities on tidal dynamics in DYB is different from that in previously reported semi-enclosed bays where large-scale land reclamation has been carried out.


2018 ◽  
Vol 206 ◽  
pp. 61-75 ◽  
Author(s):  
Guan Dong Gao ◽  
Xiao Hua Wang ◽  
Xian Wen Bao ◽  
Dehai Song ◽  
Xiao Pei Lin ◽  
...  

2020 ◽  
pp. 1-19
Author(s):  
Cinalberto Bertozzi ◽  
Fabio Paglione

The Burana Land-Reclamation Board is an interregional water board operating in three regions and five provinces. The Burana Land-Reclamation Board operates over a land area of about 250,000 hectares between the Rivers Secchia, Panaro and Samoggia, which forms the drainage basin of the River Panaroand part of the Burana-Po di Volano, from the Tuscan-Emilian Apennines to the River Po. Its main tasks are the conservation and safeguarding of the territory, with particular attention to water resources and how they are used, ensuring rainwater drainage from urban centres, avoiding flooding but ensuringwater supply for crop irrigation in the summer to combat drought. Since the last century the Burana Land-Reclamation Board has been using innovative techniques in the planning of water management schemes designed to achieve the above aims, improving the management of water resources while keeping a constant eye on protection of the environment.


Author(s):  
Sergey Vasil'ev ◽  
Vyacheslav Schedrin ◽  
Aleksandra Slabunova ◽  
Vladimir Slabunov

The aim of the research is a retrospective analysis of the history and stages of development of digital land reclamation in Russia, the definition of «Digital land reclamation» and trends in its further development. In the framework of the retrospective analysis the main stages of melioration formation are determined. To achieve the maximum effect of the «digital reclamation» requires full cooperation of practical experience and scientific potential accumulated throughout the history of the reclamation complex, and the latest achievements of science and technology, which is currently possible only through the full digitalization of reclamation activities. The introduction of «digital reclamation» will achieve greater potential and effect in the modernization of the reclamation industry in the «hightech industry», through the use of innovative developments and optimal management decisions.


Author(s):  
Georgiy Gulyuk ◽  
Aleksey Ivanov ◽  
Yuri Yanko

Current situation and agricultural management on the non-black earth area of Russia arebeing gradually worsen by the negative natural factors such as a significant increase of weather based climatic abnormal risks, deterioration of agro-meliorative conditions of agricultural lands because of colonization by tree and shrubbery vegetation and secondary bog formation, hidden degradation of soil fertility. When combined with functional loss of ameliorative complex and meliorative systems amortization, regional agriculture adaptation possibilities were rapidly limited. Production shortfall due no abnormal weather conditions for particular field crops was 19…48% during last five years, level of business realization of bioclimatic potential on a field was decreased by 7…12%.The complete realization of regional agricultural adaptive potential to weather based climatic changes and limitation of greenhouse gases emissions is possible on a basis of regeneration ofalll functions and aspects of ameliorative complex management. Toward this goal the coordinated actions of federal and regional management of Agricultural Complex, Scientific and Educational institutions, project foundations and managers are needed in a relation to human resources, scientific and regulatory supply. Any incomplete treatment in these fields inherent in visual negative consequences for food security and social economic development of rural areas of non-black earth zones not only at the current historical moment, but in a future also. Fundamental influence of solving of these problems deserves to scientific supply of innovative ameliorative complex, renewal of which should be based on principals of resources and energy preservation, nature management, computerization and digitalization management. During a long term research it was established that increase of average vegetation period temperature by lоСhas increased productivity of winter wheat, barley and summer wheat in average on 0,7 tons per ha, winter wheat and oat on 0,4 tons per ha, potatoes – 8,2 tons per ha, edible roots-6,4 tons per ha, cabbage 9,8 tons per ha, dry basis of herbage of multi and one age grasses–0,5 and 0,7 tons per ha. Increase of СО2 Concentration from 0,35 to 0,45% during last twenty years contributed into grow of yield in regional agriculture which can be estimated as 0,3 tons per ha per measure; searching remedy for agroclimatical risks decreasing production became drainage and irrigation systems (decrease 3…5 times);new method of reclamation of abandoned areas with transformation of biomass of tree and shrubbery vegetation into biochar makes it possible to decrease СО2 emissions up to times and get an adverse balance of СО2;secondary reclamation of lands covered by trees and shrubbery on area of 22ha used for vegetables and area of 37ha used for forage crops could supply a farmer with work and revenue sufficient for maintenance of one child what is on the major facts of population declaim in rural areas.


Sign in / Sign up

Export Citation Format

Share Document