scholarly journals Naturally occurring radium (Ra) in home drinking‐water wells in the Sandhills region of South Carolina, USA: Can high concentrations be predicted?

GeoHealth ◽  
2017 ◽  
Vol 1 (4) ◽  
pp. 138-150 ◽  
Author(s):  
Jeffrey M. Schrag
Author(s):  
Maria Alexandra HOAGHIA ◽  
Erika LEVEI ◽  
Cecilia ROMAN ◽  
Dumitru RISTOIU

Worldwide, the groundwater (water well and public spring) is used as drinking water source. The water quality is important due to the possible negative effects on the consumers’ health, especially for infants. Nitrogen compounds (NO2-, NO3-, NH4+) are present as natural components of the nitrogen cycle and their presence in the groundwater is ubiquitous. But, due to the anthropogenic activities high concentrations of nitrogen compounds are release into the groundwater, thereby the chemical compounds concentrations exceed the maximum allowable concentrations (MACs). The purpose of the present study was to assess the content of nitrogen compounds in groundwater, namely private water wells and public springs used as drinking water sources by the Medias town population. The study results show alarming NO2- and NO3- concentrations; the NO3- concentrations exceed 5 times the MAC and NO2- concentrations exceed3 times the MAC. 


Author(s):  
William M. Alley ◽  
Rosemarie Alley

This chapter begins with what has been called “the largest poisoning of a population in history,” as a result of arsenic poisoning from wells in Bangladesh and West Bengal, India. The chapter then examines the challenges of determining the safe level and standards for arsenic in drinking water. The ongoing challenges of educating homeowners in New Hampshire where high levels of arsenic occur in many private wells are then discussed. The chapter concludes with discussion of other naturally occurring contaminants in drinking water wells, such as fluoride, radon, radium, and uranium.


2001 ◽  
Vol 203 (3) ◽  
pp. 221-224 ◽  
Author(s):  
Angela Queste ◽  
Martin Lacombe ◽  
Wolfgang Hellmeier ◽  
Frank Hillermann ◽  
Bianca Bortulussi ◽  
...  

2014 ◽  
Vol 4 (2) ◽  
pp. 467-476
Author(s):  
Nisha Sharma ◽  
Jaspal Singh ◽  
Barjinder Kaur

Radionuclides (uranium, thorium, radium, radon gas etc.) are found naturally in air, water, soil and rock. Everyday, we ingest and inhale these radionuclides through the air we breathe and through food and water we take. Out of the internal exposure via ingestion of radionuclides, water contributes the major portion. The natural radioactivity of water is due to the activity transfer from bed rock and soils. In our surveys carried out in the past few years, we have observed high concentrations of uranium and total dissolved solids (TDS) in drinking waters of some southern parts of Punjab State exceeding the safe limits recommended by national and international agencies. The main drinking water source is the underground water procured from different depths. Due to the highly saline taste, disorders in their digestive systems and other ailments, people are installing reverse osmosis (RO) systems in their houses. Some RO systems have been installed on commercial basis. The state government is also in the process of installing community RO systems at the village level. As high values of uranium are also undesired and may pose health hazards due to radioactivity and toxicity of uranium, we have conducted a survey in the field to study the performance of various RO systems for removal of uranium and TDS. Water samples from about forty RO systems from Faridkot, Mansa, Bathinda and Amritsar districts of Punjab State were collected and analyzed. Our results show that some RO systems are able to remove more than 99% of uranium in the underground waters used for drinking purposes. TDS values are also reduced considerably to the desired levels. So RO systems can be used to avoid the risk of unduly health problems posed by high concentrations of uranium and TDS in drinking water.


2012 ◽  
Vol 12 (5) ◽  
pp. 699-706 ◽  
Author(s):  
B. S. Marti ◽  
G. Bauser ◽  
F. Stauffer ◽  
U. Kuhlmann ◽  
H.-P. Kaiser ◽  
...  

Well field management in urban areas faces challenges such as pollution from old waste deposits and former industrial sites, pollution from chemical accidents along transport lines or in industry, or diffuse pollution from leaking sewers. One possibility to protect the drinking water of a well field is the maintenance of a hydraulic barrier between the potentially polluted and the clean water. An example is the Hardhof well field in Zurich, Switzerland. This paper presents the methodology for a simple and fast expert system (ES), applies it to the Hardhof well field, and compares its performance to the historical management method of the Hardhof well field. Although the ES is quite simplistic it considerably improves the water quality in the drinking water wells. The ES knowledge base is crucial for successful management application. Therefore, a periodic update of the knowledge base is suggested for the real-time application of the ES.


1993 ◽  
Vol 27 (7-8) ◽  
pp. 127-133 ◽  
Author(s):  
H. Dizer ◽  
J. Dürkop ◽  
A. Grohmann ◽  
H. Kopecka ◽  
J. M. López-Pila

Secondary effluent of wastewater treatment plants contains a high number of viruses and other pathogens, which pose a health risk to the population, (especially when receiv ng waters are used for bathing and swimming, or for growing shellfish. In areas with a high density of population, where drinking water supply is dependent on surface waters and contaminated rivers are the primary source of drinking water, failure of the filtration or of the disinfection step, or of any other “barriers” supposed to warrant safe potable water, will increase the risk of health hazard for the consumer. We have compared the efficiency of viral elimination in secondary effluent by flocculation, uv rradiation and membrane filtration taking naturally occurring, or additionally seeded f2 phages, as indicator for viruses. Flocculation decreased the number of phages present in secondary effluent by more than two logs. If combined with uv irradiation, the elimination reached five additional logs. Membrane filtration eliminated essentially all naturally occurring phages. Improvement of the quality of surface waters calls for a refinement of detection methods for viruses. We have found that the polymerase chain reaction (PCR) might be used for detecting viruses in surface waters.


2018 ◽  
Author(s):  
Melinda L. Erickson ◽  
◽  
Craig J. Brown ◽  
Paul E. Stackelberg ◽  
Bernard T. Nolan

2018 ◽  
Author(s):  
Emily Berquist ◽  
◽  
Helen Fitzgerald Malenda ◽  
Melinda L. Erickson

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Natasa Skrbic ◽  
Vaidotas Kisielius ◽  
Ann-Katrin Pedersen ◽  
Sarah C. B. Christensen ◽  
Mathilde J. Hedegaard ◽  
...  

Abstract Background Ptaquiloside (PTA), caudatoside (CAU) and ptesculentoside (PTE) are carcinogenic illudane glycosides found in bracken ferns (Pteridium spp.) world-wide. The environmentally mobile PTA entails both acute and chronic toxicity. A comparable risk might be associated with the structurally similar CAU and PTE. It is of great health concern if these compounds are present in drinking water, however, it is currently unknown if these compounds can detected in wells in bracken-dominated regions. This study investigates the presence of PTA, CAU, PTE, and their corresponding hydrolysis products pterosins B (PtB), A (PtA) and G (PtG) in water wells in Denmark, Sweden and Spain. Water samples from a total of 77 deep groundwater wells (40–100 m) and shallow water wells (8–40 m) were collected and preserved in the field, pre-concentrated in the laboratory and analysed by liquid chromatography–mass spectrometry (LC–MS). Results Deep groundwater wells contained neither illudane glycosides nor their pterosins. However, seven private shallow wells contained at least one of the illudane glycosides and/or pterosins at concentrations up to 0.27 µg L−1 (PTA), 0.75 µg L−1 (CAU), 0.05 µg L−1 (PtB), 0.03 µg L−1 (PtA) and 0.28 µg L−1 (PtG). This is the first finding of illudane glycosides and pterosins in drinking water wells. Conclusions Detected concentrations of illudane glycosides in some of investigated wells exceeded the suggested maximum tolerable concentrations of PTA, although they were used for drinking water purpose. Contaminated wells were shallow with neutral pH and lower electric conductivity compared to deep groundwater wells with no illudane glycosides nor pterosins.


Sign in / Sign up

Export Citation Format

Share Document