Cell Death: Biological Mechanisms and Small Molecule Inhibitors

Author(s):  
Olga Korkina ◽  
Alexei Degterev
Author(s):  
Zhennan Fang ◽  
Huiqiang Wei ◽  
Wenfeng Gou ◽  
Leyuan Chen ◽  
Changfen Bi ◽  
...  

Nonapoptotic types of regulated cell death have attracted widespread interest since the discovery that certain forms of cell necrosis can be regulated. In particular, research into cell necroptosis has made significant progress in connection with kidney, inflammatory, degenerative and neoplastic diseases. Inhibitors targeting the critical necroptosis-associated proteins RIPK1/3 and MLKL have been in development for more than a decade. Herein the authors compile a list of the known small-molecule inhibitors of these enzymes and representative structures of compounds co-crystallized with these proteins and put forward some thoughts regarding their future development.


2020 ◽  
Vol 117 (40) ◽  
pp. 24802-24812 ◽  
Author(s):  
Salima Daou ◽  
Manisha Talukdar ◽  
Jinle Tang ◽  
Beihua Dong ◽  
Shuvojit Banerjee ◽  
...  

The oligoadenylate synthetase (OAS)–RNase L system is an IFN-inducible antiviral pathway activated by viral infection. Viral double-stranded (ds) RNA activates OAS isoforms that synthesize the second messenger 2-5A, which binds and activates the pseudokinase-endoribonuclease RNase L. In cells, OAS activation is tamped down by ADAR1, an adenosine deaminase that destabilizes dsRNA. Mutation of ADAR1 is one cause of Aicardi-Goutières syndrome (AGS), an interferonopathy in children. ADAR1 deficiency in human cells can lead to RNase L activation and subsequent cell death. To evaluate RNase L as a possible therapeutic target for AGS, we sought to identify small-molecule inhibitors of RNase L. A 500-compound library of protein kinase inhibitors was screened for modulators of RNase L activity in vitro. We identified ellagic acid (EA) as a hit with 10-fold higher selectivity against RNase L compared with its nearest paralog, IRE1. SAR analysis identified valoneic acid dilactone (VAL) as a superior inhibitor of RNase L, with 100-fold selectivity over IRE1. Mechanism-of-action analysis indicated that EA and VAL do not bind to the pseudokinase domain of RNase L despite acting as ATP competitive inhibitors of the protein kinase CK2. VAL is nontoxic and functional in cells, although with a 1,000-fold decrease in potency, as measured by RNA cleavage activity in response to treatment with dsRNA activator or by rescue of cell lethality resulting from self dsRNA induced by ADAR1 deficiency. These studies lay the foundation for understanding novel modes of regulating RNase L function using small-molecule inhibitors and avenues of therapeutic potential.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3784 ◽  
Author(s):  
Yuanqiang Wang ◽  
Haiqiong Guo ◽  
Zhiwei Feng ◽  
Siyi Wang ◽  
Yuxuan Wang ◽  
...  

The blockade of the programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway plays a critical role in cancer immunotherapy by reducing the immune escape. Five monoclonal antibodies that antagonized PD-1/PD-L1 interaction have been approved by the Food and Drug Administration (FDA) and marketed as immunotherapy for cancer treatment. However, some weaknesses of antibodies, such as high cost, low stability, poor amenability for oral administration, and immunogenicity, should not be overlooked. To overcome these disadvantages, small-molecule inhibitors targeting PD-L1 were developed. In the present work, we applied in silico and in vitro approaches to develop short peptides targeting PD-1 as chemical probes for the inhibition of PD-1–PD-L1 interaction. We first predicted the potential binding pocket on PD-1/PD-L1 protein–protein interface (PPI). Sequentially, we carried out virtual screening against our in-house peptide library to identify potential ligands. WANG-003, WANG-004, and WANG-005, three of our in-house peptides, were predicted to bind to PD-1 with promising docking scores. Next, we conducted molecular docking and molecular dynamics (MD) simulation for the further analysis of interactions between our peptides and PD-1. Finally, we evaluated the affinity between peptides and PD-1 by surface plasmon resonance (SPR) binding technology. The present study provides a new perspective for the development of PD-1 inhibitors that disrupt PD-1–PD-L1 interactions. These promising peptides have the potential to be utilized as a novel chemical probe for further studies, as well as providing a foundation for further designs of potent small-molecule inhibitors targeting PD-1.


2016 ◽  
Vol 22 (10) ◽  
pp. 1101-1107 ◽  
Author(s):  
Miao Xu ◽  
Emily M Lee ◽  
Zhexing Wen ◽  
Yichen Cheng ◽  
Wei-Kai Huang ◽  
...  

2015 ◽  
Vol 36 (3) ◽  
pp. 519-525 ◽  
Author(s):  
Andrew J. Thomas ◽  
Patricia Wu ◽  
David W. Raible ◽  
Edwin W. Rubel ◽  
Julian A. Simon ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5558-5558
Author(s):  
Madiha Iqbal ◽  
Aarushi Sharma ◽  
Alak Manna ◽  
Sharoon Akhtar ◽  
Taimur Sher ◽  
...  

Abstract INTRODUCTION: Treatment of chronic lymphocytic leukemia (CLL) has expanded significantly with the approval of multiple small molecule inhibitors. This is of great significance for patients with adverse cytogenetic features who tend to respond poorly to standard chemo-immunotherapy (CIT). While single agent ibrutinib and venetoclax (V) have shown high rates of overall response, complete remission and minimal residual disease (MRD) eradication rates remain low. This argues for further testing and development of various combination strategies. The MURANO trial compared venetoclax and rituximab (VR) versus bendamustine and rituximab (BR) in patients with relapsed/refractory CLL reporting clear superiority of VR over BR. MRD rates in the bone marrow were reported to be 27.3% for VR versus 1.5% for BR. Given much higher rates of MRD eradication with combination of small molecule inhibitors and monoclonal antibodies (mAb) compared to standard CIT, we performed a comparative investigation into the direct and immune-mediated cytolytic effects of VR versus V + Obinutuzumab (O, type II anti-CD20 mAb) in primary CLL cells and B-lymphoid cell lines. METHODS: CD19+ B-cells were isolated from PBMCs of CLL patients (N=3). For all experiments using primary CLL cells, concentration of VR and VO was 3nM (V) and 10ug /ml (R, O), respectively. For cell lines, VR and VO was used at 5uM (V) and 10ug /ml (R, O), respectively. Apoptosis was determined by annexin-V/PI staining followed by flow cytometry. Antibody-dependent cell-mediated cytotoxicity (ADCC) induced by VR and VO was assessed in Calcein AM labeled CLL cells or cell lines co-cultured with healthy donor PBMCs (E:T ratio, 40:1); complement-dependent cytotoxicity (CDC) was measured using 10% serum from a healthy human donor. RESULTS: We assessed the ability of V+/-O or V+/-R to induce apoptotic cell death in the CD20+ BCWM.1 cell line (Waldenström's macroglobulinemia [WM] phenotype) and the MEC-1 cell line (B-PLL phenotype); with CD20- RPCI-WM1 (WM cells, negative control). Notably, Bcl-2 protein is expressed in all the aforementioned cell lines. We observed that single agent V, O and R induced ~30%, 61% and 13.64% annexin V/PI positivity in BCWM.1 cells, respectively. However, a significant degree of cell death was noted in VO-treated cells (~74%) compared to VR-treated cells (~40%) (p<0.01). Next, we examined for apoptosis in MEC1 cells and noted a similar trend; where the VO combination induced markedly more cell death (~71%) than VR (~57%). Contrastingly, in RPCI-WM1 cells neither single agent O or R could elicit >12% annexin V/PI positivity and where the addition of V increased apoptosis by only 3 - 4%. We also examined the apoptotic potential of VO or VR in tumor cells from low, intermediate and high-risk CLL patients. In low and intermediate-risk CLL cells from low and intermediate-risk patients, V alone induced ~30% cell death, which increased significantly with the addition of O (VO) to between 48 - 52%. Contrastingly, the combination of VR did not induce more than 29 - 32% apoptosis. In CLL cells from high-risk patient, we noted that exposure to single agent V induced ~ 28% cell death and in VO-treated cells, this number increased to 47%. We also examined for ADCC and CDC in the same cell lines and primary CLL cells. Despite considerable variability, single agent O and VO treatment of tumor cells resulted in greater ADCC than VR treatment. By contrast, in single agent R or VR-treated cells, more CDC was observed. CONCLUSION: Our preliminary investigation in VR- and VO-treated cell lines and primary CLL cells suggests the VO combination may be superior to VR in induction of direct tumor cell death. Mechanistic experiments underway will provide further insight and can aid in design of future VO-based clinical studies in CLL. Disclosures Ailawadhi: Pharmacyclics: Research Funding; Takeda: Consultancy; Celgene: Consultancy; Janssen: Consultancy; Amgen: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document