Impact of SrRuO3 /LaNiO3 Doubly-Stacked Bottom Electrode on the Characteristics of c-Axis-Oriented CaBi4 Ti4 O15 Films

Author(s):  
Kenji Takahashi ◽  
Muneyasu Suzuki ◽  
Shoji Okamoto ◽  
Hiroshi Funakubo
Keyword(s):  
2019 ◽  
Vol 9 (4) ◽  
pp. 486-493 ◽  
Author(s):  
S. Sahoo ◽  
P. Manoravi ◽  
S.R.S. Prabaharan

Introduction: Intrinsic resistive switching properties of Pt/TiO2-x/TiO2/Pt crossbar memory array has been examined using the crossbar (4×4) arrays fabricated by using DC/RF sputtering under specific conditions at room temperature. Materials and Methods: The growth of filament is envisaged from bottom electrode (BE) towards the top electrode (TE) by forming conducting nano-filaments across TiO2/TiO2-x bilayer stack. Non-linear pinched hysteresis curve (a signature of memristor) is evident from I-V plot measured using Pt/TiO2-x /TiO2/Pt bilayer device (a single cell amongst the 4×4 array is used). It is found that the observed I-V profile shows two distinguishable regions of switching symmetrically in both SET and RESET cycle. Distinguishable potential profiles are evident from I-V curve; in which region-1 relates to the electroformation prior to switching and region-2 shows the switching to ON state (LRS). It is observed that upon reversing the polarity, bipolar switching (set and reset) is evident from the facile symmetric pinched hysteresis profile. Obtaining such a facile switching is attributed to the desired composition of Titania layers i.e. the rutile TiO2 (stoichiometric) as the first layer obtained via controlled post annealing (650oC/1h) process onto which TiO2-x (anatase) is formed (350oC/1h). Results: These controlled processes adapted during the fabrication step help manipulate the desired potential barrier between metal (Pt) and TiO2 interface. Interestingly, this controlled process variation is found to be crucial for measuring the switching characteristics expected in Titania based memristor. In order to ensure the formation of rutile and anatase phases, XPS, XRD and HRSEM analyses have been carried out. Conclusion: Finally, the reliability of bilayer memristive structure is investigated by monitoring the retention (104 s) and endurance tests which ensured the reproducibility over 10,000 cycles.


Author(s):  
Saúl Estandía ◽  
Jaume Gàzquez ◽  
María Varela ◽  
Nico Dix ◽  
Mengdi Qian ◽  
...  

Comparison of a set of perovskite electrodes shows that La1−x(Ca,Sr)xMnO3 is critical to stabilize the ferroelectric orthorhombic phase in epitaxial films. The stabilization is favored if the La content in the manganite is high.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 143
Author(s):  
Sitao Fei ◽  
Hao Ren

As a result of their IC compatibility, high acoustic velocity, and high thermal conductivity, aluminum nitride (AlN) resonators have been studied extensively over the past two decades, and widely implemented for radio frequency (RF) and sensing applications. However, the temperature coefficient of frequency (TCF) of AlN is −25 ppm/°C, which is high and limits its RF and sensing application. In contrast, the TCF of heavily doped silicon is significantly lower than the TCF of AlN. As a result, this study uses an AlN contour mode ring type resonator with heavily doped silicon as its bottom electrode in order to reduce the TCF of an AlN resonator. A simple microfabrication process based on Silicon-on-Insulator (SOI) is presented. A thickness ratio of 20:1 was chosen for the silicon bottom electrode to the AlN layer in order to make the TCF of the resonator mainly dependent upon heavily doped silicon. A cryogenic cooling test down to 77 K and heating test up to 400 K showed that the resonant frequency of the AlN resonator changed linearly with temperature change; the TCF was shown to be −9.1 ppm/°C. The temperature hysteresis characteristic of the resonator was also measured, and the AlN resonator showed excellent temperature stability. The quality factor versus temperature characteristic was also studied between 77 K and 400 K. It was found that lower temperature resulted in a higher quality factor, and the quality factor increased by 56.43%, from 1291.4 at 300 K to 2020.2 at 77 K.


1996 ◽  
Vol 433 ◽  
Author(s):  
Norifumi Fujimura ◽  
Tadashi Ishida ◽  
Takeshi Yoshimura ◽  
Taichiro Ito

AbstractWe have proposed ReMnO3 (Re:rare earth) thin films, as a new candidate for nonvolatile memory devices. In this paper, we try to fabricate (0001) oriented YMnO3 films on (111)MgO, (0001)ZnO:Al/(0001) sapphire and (111)Pt/(111)MgO using rf magnetron sputtering. We succeed in obtaining (0001) epitaxial YMnO3 films on (111) MgO and (0001)ZnO:Al/(0001)sapphire substrate, and polycrystalline films on (111)Pt/(1 11)MgO for the first time. Electrical property of the bottom electrode (ZnO:Al) changes with varying the deposition condition of YMnO3 films. However, we find an optimum deposition condition of ZnO:Al film such that it functions as a bottom electrode even after YMnO3 film deposition. The dielectric properties of the epitaxial and polycrystalline YMnO3 films are almost the same. The YMnO3 films show leaky electrical properties. This may be caused by a change in the valence electron of Mn from 3+.


2015 ◽  
Vol 54 (4S) ◽  
pp. 04DM06 ◽  
Author(s):  
Sadahiko Miura ◽  
Hiroaki Honjo ◽  
Keizo Kinoshita ◽  
Keiichi Tokutome ◽  
Hiroaki Koike ◽  
...  

1997 ◽  
Vol 493 ◽  
Author(s):  
Seung-Hyun Kim ◽  
J. G. Hong ◽  
J. C. Gunter ◽  
H. Y. Lee ◽  
S. K. Streiffer ◽  
...  

ABSTRACTFerroelectric PZT thin films on thin RuO2 (10, 30, 50nm)/Pt hybrid bottom electrodes were successfully prepared by using a modified chemical solution deposition method. It was observed that the use of a lOnm RuO2Pt bottom electrode reduced leakage current, and gave more reliable capacitors with good microstructure compare to the use of thicker RuO2/Pt bottom electrodes. Typical P-E hysteresis behavior was observed even at an applied voltage of 3V, demonstrating greatly improved remanence and coercivity. Fatigue and breakdown characteristics, measured at 5V, showed stable behavior, and only below 13-15% degradation was observed up to 1010 cycles. Thicker RuO2 layers resulted in high leakage current density due to conducting lead ruthenate or PZT pyrochlore-ruthenate and a rosette-type microstructure.


2011 ◽  
Vol 204-210 ◽  
pp. 152-155
Author(s):  
Chao Wu ◽  
Wen Jie Zhang

Carbon nanotubes (CNTs) had good field emission ability and were adopted to form the cold cathode. The backlight field emission unit (BFEU) with CNTs as field emitter was designed and fabricated, and the detailed manufacture process was also given. The flat soda-lime glass was used as substrate plate. With the photolithography process, the indium tin oxide thin film covered on the cathode plate surface was divided into bar stripes to form the meshy bottom electrode for improving the field emission properties of CNT emitters. The sealed BFEU demonstrated better field emission performance, high luminance brightness. With the simple fabrication process, the total manufacture cost was also low.


Author(s):  
Fangrong Hu ◽  
Jun Yao ◽  
Chuankai Qiu ◽  
Dajia Wang

In this paper, a MEMS mirror actuated by an electrostatic repulsive force has been proposed and analyzed. The mirror consists of four U-shape springs, a fixed bottom electrode and a movable top electrode, there are many comb fingers on the edges of both electrodes. When the voltage is applied to the top and bottom electrodes, an asymmetric electric field is generated to the top movable fingers and springs, thus a net electrostatic force is produced to move the top plate out of plane. This designed micro-mirror is different from conventional MDM based on electrostatic-attractive-force, which is restricted by one-third thickness of the sacrificial layer for the pull-in phenomenon. The characteristic of this MDM has been analyzed, the result shows that the resonant frequency of the first mode is 8 kHz, and the stroke reaches 10μm at 200V, a MDM with large strokes can be realized for the application of adaptive optics in optical aberrations correction.


Sign in / Sign up

Export Citation Format

Share Document