Characterization of the Artificial Aging Behavior and Formability of a High Strength EN AW-6016 at Different Heat Treatment Conditions Used for Automotive Applications

Author(s):  
Ramona Prillhofer ◽  
Josef Berneder ◽  
Josef Enser ◽  
Dirk Uffelmann ◽  
Peter Schulz ◽  
...  
2015 ◽  
Vol 830-831 ◽  
pp. 131-134 ◽  
Author(s):  
Bikramjit Podder ◽  
Chandan Mondal ◽  
G. Gopi ◽  
K. Ramesh Kumar

The present study reports the effect of the heat treatment on the tensile properties of the reverse flow-formed AA6082 Aluminum alloy tube. Tensile specimens obtained after each forming pass have been subjected to three different heat-treatment conditions viz., as-flow formed (AFF), as-flow formed followed by artificial aging (170°C/6h) and HT (solutionizing + 170°C/6h) treatments. Characterization of the tensile properties reveals that as-flow formed condition (followed by natural aging) gives the best combination of yield strength, UTS and percentage of elongation. The variations in tensile properties are correlated with microstructure of the materials.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 647 ◽  
Author(s):  
Bingrong Zhang ◽  
Lingkun Zhang ◽  
Zhiming Wang ◽  
Anjiang Gao

In order to obtain high-strength and high-ductility Al–Si–Cu–Mg alloys, the present research is focused on optimizing the composition of soluble phases, the structure and morphology of insoluble phases, and artificial ageing processes. The results show that the best matches, 0.4 wt% Mg and 1.2 wt% Cu in the Al–9Si alloy, avoided the toxic effect of the blocky Al2Cu on the mechanical properties of the alloy. The addition of 0.6 wt% Zn modified the morphology of eutectic Si from coarse particles to fine fibrous particles and the texture of Fe-rich phases from acicular β-Fe to blocky π-Fe in the Al–9Si–1.2Cu–0.4Mg-based alloy. With the optimization of the heat treatment parameters, the spherical eutectic Si and the fully fused β-Fe dramatically improved the ultimate tensile strength and elongation to fracture. Compared with the Al–9Si–1.2Cu–0.4Mg-based alloy, the 0.6 wt% Zn modified alloy not only increased the ultimate tensile strength and elongation to fracture of peak ageing but also reduced the time of peak ageing. The following improved combination of higher tensile strength and higher elongation was achieved for 0.6 wt% Zn modified alloy by double-stage ageing: 100 °C × 3 h + 180 °C × 7 h, with mechanical properties of ultimate tensile strength (UTS) of ~371 MPa, yield strength (YS) of ~291 MPa, and elongation to fracture (E%) of ~5.6%.


2021 ◽  
Vol 410 ◽  
pp. 197-202
Author(s):  
Pavel P. Poleckov ◽  
Olga A. Nikitenko ◽  
Alla S. Kuznetsova

This study considers the influence of various heat treatment conditions on the change of steel microstructure parameters, mechanical properties and cold resistance at a temperature of-60 °C. The common behavior of these properties is considered depending on the heating temperature used for quenching and subsequent tempering. Based on the obtained results, heat treatment conditions are proposed that provide a combination of a guaranteed yield point σ0.2 ≥600 N/mm2 with a low-temperature impact toughness KCV-60 ≥50 J/cm2 and plasticity δ5 ≥17%. The obtained research results are intended for industrial use at the mill "5000" site of MMK PJSC.


2008 ◽  
Vol 2 (2) ◽  
pp. 109-114 ◽  
Author(s):  
Ljubica Nikolic ◽  
Marija Maletin ◽  
Paula Ferreira ◽  
Paula Vilarinho

One-dimensional titania structures were synthesized trough a simple hydrothermal process in a highly alkaline conditions. The aim of this work was to elucidate the effect of time on the formation of 1D titanates as well on its structural characteristics (morphology, phase composition, surface area). Apart from that, the effect of heat treatment conditions on the stability of titanate based 1D samples has been investigated. The results have revealed that it is possible to form one-dimensional titanates already after 1 hour of hydrothermal synthesis. Although the composition of titanates is still under debate, the results probably correspond to the layered sodium titanates. The 1D prepared structures show a remarkable stability during heating, remaining the basic morphology and composition even up to 700?C.


2021 ◽  
Vol 315 ◽  
pp. 37-42
Author(s):  
Hai Long Liao ◽  
Li Hua Zhan ◽  
Yuan Gao ◽  
Xue Ying Chen ◽  
Ming Hui Huang

2195 Al-Li alloy is famous for high strength, excellent fatigue strength and good stress corrosion resistance, which is widely used in the manufacture of high-performance aerospace components. The aim of this study is to validate how the stress relaxation aging behavior effect on the mechanical properties of 2195 Al-Li alloy. Through mechanical property test, the research was found that the performance after stress relaxation aging is higher than artificial aging (AA). In addition, the analysis of scanning electron microscopy SEM and TEM revealed that dislocations should be introduced by the stress relaxation aging process, which is more conducive to the precipitation of the T1 phase and strengthened the material with prolong ageing time. The results show that stress relaxation aging can significantly promote the precipitation of the T1. Therefore, this paper sheds new light on how SRA can improve mechanical properties and that SRA make better improve the distribution of precipitates in the grain boundary.


2006 ◽  
Vol 15-17 ◽  
pp. 531-536 ◽  
Author(s):  
W. Xu ◽  
D. San Martin ◽  
Pedro E.J. Rivera-Díaz-del-Castillo ◽  
Sybrand van der Zwaag

High molybdenum high strength stainless steels can contain the so-called Chi phase (Fe36Cr12Mo10). The presence of this phase, which normally occurs at grain boundaries, depletes the chromium content leading to intergranular corrosion. This may cause alloy embrittlement during long term use. The presence of such phase has proven to be highly sensitive to alloy processing parameters such as the cooling rate after a final heat treatment. The present work provides a model to quantify the effects of processing parameters aimed at controlling the Chi phase. The model is based on nucleation and growth classical theories involving capillarity effects for the early stages; it is applied to a range of heat treatment conditions and compared to experimental results.


2017 ◽  
Vol 263 ◽  
pp. 137-141
Author(s):  
Su Jun Guan ◽  
Liang Hao ◽  
Hiroyuki Yoshida ◽  
Hiroshi Asanuma ◽  
Fu Sheng Pan ◽  
...  

Photocatalyst coatings on alumina (Al2O3) balls had been successfully fabricated by mechanical coating technique, with titanium carbide (TiC) powder and subsequent heat treatment in carbon powder. The effect of heat treatment conditions in carbon powder on the formed compounds, surface morphology and photocatalytic activity of photocatalyst coatings was investigated. XRD results show that the formed compounds change with increasing the heat treatment temperature in carbon powder, and rutile TiO2 on the surface of TiC coatings at 1073 K and 1173 K. The generated oxygen vacancies confirmed by XPS measurement, are in favor of narrowing band gap to enhance the visible-light photocatalytic activity of photocatalyst coatings. The photocatalytic activity of photocatalyst coatings has been effectively enhanced, and the samples fabricated at 1073 K and 1173 K for 2 h show higher activity. The fabrication strategy provides us a facile preparation procedure of visible-light responsive photocatalyst coatings.


Sign in / Sign up

Export Citation Format

Share Document