Gut Microbiota and Polyphenols: A Strict Connection Enhancing Human Health

2015 ◽  
pp. 335-350
Author(s):  
Filomena Nazzaro ◽  
Florinda Fratianni ◽  
Antonio d'Acierno ◽  
Raffaele Coppola
Keyword(s):  
2019 ◽  
Vol 26 (19) ◽  
pp. 3567-3583 ◽  
Author(s):  
Maria De Angelis ◽  
Gabriella Garruti ◽  
Fabio Minervini ◽  
Leonilde Bonfrate ◽  
Piero Portincasa ◽  
...  

Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influence the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota.


2021 ◽  
Vol 10 (13) ◽  
pp. 2903
Author(s):  
Jiezhong Chen ◽  
Luis Vitetta

The gut microbiota is well known to exert multiple benefits on human health including protection from disease causing pathobiont microbes. It has been recognized that healthy intestinal microbiota is of great importance in the pathogenesis of COVID-19. Gut dysbiosis caused by various reasons is associated with severe COVID-19. Therefore, the modulation of gut microbiota and supplementation of commensal bacterial metabolites could reduce the severity of COVID-19. Many approaches have been studied to improve gut microbiota in COVID-19 including probiotics, bacterial metabolites, and prebiotics, as well as nutraceuticals and trace elements. So far, 19 clinical trials for testing the efficacy of probiotics and synbiotics in COVID-19 prevention and treatment are ongoing. In this narrative review, we summarize the effects of various approaches on the prevention and treatment of COVID-19 and discuss associated mechanisms.


Author(s):  
Jie Cai ◽  
Zhongxu Chen ◽  
Wei Wu ◽  
Qinlu Lin ◽  
Ying Liang

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guojun Wu ◽  
Naisi Zhao ◽  
Chenhong Zhang ◽  
Yan Y. Lam ◽  
Liping Zhao

AbstractTo demonstrate the causative role of gut microbiome in human health and diseases, we first need to identify, via next-generation sequencing, potentially important functional members associated with specific health outcomes and disease phenotypes. However, due to the strain-level genetic complexity of the gut microbiota, microbiome datasets are highly dimensional and highly sparse in nature, making it challenging to identify putative causative agents of a particular disease phenotype. Members of an ecosystem seldomly live independently from each other. Instead, they develop local interactions and form inter-member organizations to influence the ecosystem’s higher-level patterns and functions. In the ecological study of macro-organisms, members are defined as belonging to the same “guild” if they exploit the same class of resources in a similar way or work together as a coherent functional group. Translating the concept of “guild” to the study of gut microbiota, we redefine guild as a group of bacteria that show consistent co-abundant behavior and likely to work together to contribute to the same ecological function. In this opinion article, we discuss how to use guilds as the aggregation unit to reduce dimensionality and sparsity in microbiome-wide association studies for identifying candidate gut bacteria that may causatively contribute to human health and diseases.


2021 ◽  
Author(s):  
Carlos E. Iglesias-Aguirre ◽  
Adrián Cortés-Martín ◽  
María Á. Ávila-Gálvez ◽  
Juan Antonio Gimenez Bastida ◽  
Maria Victoria Selma ◽  
...  

Despite the high human interindividual variability in response to (poly)phenols consumption, the cause-effect relationship between some dietary (poly)phenols (flavanols and olive oil phenolics) and health effects (endothelial function and prevention...


Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 275
Author(s):  
Natsuko Matsumoto ◽  
Jonguk Park ◽  
Rie Tomizawa ◽  
Hitoshi Kawashima ◽  
Koji Hosomi ◽  
...  

Background and Objectives: The gut microbiota is associated with human health and dietary nutrition. Various studies have been reported in this regard, but it is difficult to clearly analyze human gut microbiota as individual differences are significant. The causes of these individual differences in intestinal microflora are genetic and/or environmental. In this study, we focused on differences between identical twins in Japan to clarify the effects of nutrients consumed on the entire gut microbiome, while excluding genetic differences. Materials and Methods: We selected healthy Japanese monozygotic twins for the study and confirmed their zygosity by matching 15 short tandem repeat loci. Their fecal samples were subjected to 16S rRNA sequencing and bioinformatics analyses to identify and compare the fluctuations in intestinal bacteria. Results: We identified 12 genera sensitive to environmental factors, and found that Lactobacillus was relatively unaffected by environmental factors. Moreover, we identified protein, fat, and some nutrient intake that can affect 12 genera, which have been identified to be more sensitive to environmental factors. Among the 12 genera, Bacteroides had a positive correlation with retinol equivalent intake (rs = 0.38), Lachnospira had a significantly negative correlation with protein, sodium, iron, vitamin D, vitamin B6, and vitamin B12 intake (rs = −0.38, −0.41, −0.39, −0.63, −0.42, −0.49, respectively), Lachnospiraceae ND3007 group had a positive correlation with fat intake (rs = 0.39), and Lachnospiraceae UCG-008 group had a negative correlation with the saturated fatty acid intake (rs = −0.45). Conclusions: Our study is the first to focus on the relationship between human gut microbiota and nutrient intake using samples from Japanese twins to exclude the effects of genetic factors. These findings will broaden our understanding of the more intuitive relationship between nutrient intake and the gut microbiota and can be a useful basis for finding useful biomarkers that contribute to human health.


2021 ◽  
Author(s):  
Amishi Bhatt ◽  
Dhyey Kothari ◽  
Charmy Kothari ◽  
Ramesh Kothari

Most of our gut microbiota live with us in a mutually beneficial life-long relationship. The gut microbiota plays a vital role in the host’s overall health through its metabolic activities. Human microbiota might be supported by consuming friendly bacteria (probiotics) and consuming foods to improve the microbiota (prebiotics). During the last two decades, probiotics’ interest has increased with rising scientific shreds of evidence of benefits on human health. Hence, they have been exploited as various food products, mainly fermented foods. Probiotics as a treatment modality may restore normal microbiota and functioning of the gastrointestinal (GI) tract. Strong scientific evidence is associating these bacteria with the prevention and therapy of various GI disorders. (In light of the ongoing trend of probiotics, further research is needed to obtain the perspective of potential applications for better health. Probiotic applications have been extended from health applications to food and agricultural applications. The benefits of probiotics led to its applications in probiotic ‘health food’ industries and agricultural sectors.


Author(s):  
Gordana Bojic ◽  
Svetlana Golocorbin-Kohn ◽  
Maja Stojancevic ◽  
Momir Mikov ◽  
Ljiljana Suvajdzic

The intestine habitat is the natural collection of symbiotic microorganisms. The bacterial population enables many permanent metabolic activities in this environment. Inside the intestine of mammals there are an extended genome of millions of bacterial genes named microbiome. In recent years, there has been an increased interest of scientists to discover the place and the role of bio-ecological content and modulation of gut microbiota in a host organism using prebiotics, probiotics and synbiotics, which may have a great benefit for human health.


Author(s):  
Catherine Tomaro-Duchesneau ◽  
Shyamali Saha ◽  
Satya Prakash
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document