Evolution of Atmospheric Composition and Pressure

2018 ◽  
pp. 191-196
2018 ◽  
Author(s):  
Jon D. Richey ◽  
◽  
Joseph D. White ◽  
Isabel P. Montañez ◽  
Jonathan P. Wilson ◽  
...  

Author(s):  
O. Mousis ◽  
D. H. Atkinson ◽  
R. Ambrosi ◽  
S. Atreya ◽  
D. Banfield ◽  
...  

AbstractRemote sensing observations suffer significant limitations when used to study the bulk atmospheric composition of the giant planets of our Solar System. This impacts our knowledge of the formation of these planets and the physics of their atmospheres. A remarkable example of the superiority of in situ probe measurements was illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases’ abundances and the precise measurement of the helium mixing ratio were only made available through in situ measurements by the Galileo probe. Here we describe the main scientific goals to be addressed by the future in situ exploration of Saturn, Uranus, and Neptune, placing the Galileo probe exploration of Jupiter in a broader context. An atmospheric entry probe targeting the 10-bar level would yield insight into two broad themes: i) the formation history of the giant planets and that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. An atmospheric probe could represent a significant ESA contribution to a future NASA New Frontiers or flagship mission to be launched toward Saturn, Uranus, and/or Neptune.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 625
Author(s):  
Ansgar Schanz ◽  
Klemens Hocke ◽  
Niklaus Kämpfer ◽  
Simon Chabrillat ◽  
Antje Inness ◽  
...  

In this study, we compare the diurnal variation in stratospheric ozone of the MACC (Monitoring Atmospheric Composition and Climate) reanalysis, ECMWF Reanalysis Interim (ERA-Interim), and the free-running WACCM (Whole Atmosphere Community Climate Model). The diurnal variation of stratospheric ozone results from photochemical and dynamical processes depending on altitude, latitude, and season. MACC reanalysis and WACCM use similar chemistry modules and calculate a similar diurnal cycle in ozone when it is caused by a photochemical variation. The results of the two model systems are confirmed by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and three selected sites of the Network for Detection of Atmospheric Composition Change (NDACC) at Mauna Loa, Hawaii (tropics), Bern, Switzerland (midlatitudes), and Ny-Ålesund, Svalbard (high latitudes). On the other hand, the ozone product of ERA-Interim shows considerably less diurnal variation due to photochemical variations. The global maxima of diurnal variation occur at high latitudes in summer, e.g., near the Arctic NDACC site at Ny-Ålesund, Svalbard. The local OZORAM radiometer observes this effect in good agreement with MACC reanalysis and WACCM. The sensed diurnal variation at Ny-Ålesund is up to 8% (0.4 ppmv) due to photochemical variations in summer and negligible during the dynamically dominated winter. However, when dynamics play a major role for the diurnal ozone variation as in the lower stratosphere (100–20 hPa), the reanalysis models ERA-Interim and MACC which assimilate data from radiosondes and satellites outperform the free-running WACCM. Such a domain is the Antarctic polar winter where a surprising novel feature of diurnal variation is indicated by MACC reanalysis and ERA-Interim at the edge of the polar vortex. This effect accounts for up to 8% (0.4 ppmv) in both model systems. In summary, MACC reanalysis provides a global description of the diurnal variation of stratospheric ozone caused by dynamics and photochemical variations. This is of high interest for ozone trend analysis and other research which is based on merged satellite data or measurements at different local time.


Author(s):  
Gary Sutlieff ◽  
Lucy Berthoud ◽  
Mark Stinchcombe

Abstract CBRN (Chemical, Biological, Radiological, and Nuclear) threats are becoming more prevalent, as more entities gain access to modern weapons and industrial technologies and chemicals. This has produced a need for improvements to modelling, detection, and monitoring of these events. While there are currently no dedicated satellites for CBRN purposes, there are a wide range of possibilities for satellite data to contribute to this field, from atmospheric composition and chemical detection to cloud cover, land mapping, and surface property measurements. This study looks at currently available satellite data, including meteorological data such as wind and cloud profiles, surface properties like temperature and humidity, chemical detection, and sounding. Results of this survey revealed several gaps in the available data, particularly concerning biological and radiological detection. The results also suggest that publicly available satellite data largely does not meet the requirements of spatial resolution, coverage, and latency that CBRN detection requires, outside of providing terrain use and building height data for constructing models. Lastly, the study evaluates upcoming instruments, platforms, and satellite technologies to gauge the impact these developments will have in the near future. Improvements in spatial and temporal resolution as well as latency are already becoming possible, and new instruments will fill in the gaps in detection by imaging a wider range of chemicals and other agents and by collecting new data types. This study shows that with developments coming within the next decade, satellites should begin to provide valuable augmentations to CBRN event detection and monitoring. Article Highlights There is a wide range of existing satellite data in fields that are of interest to CBRN detection and monitoring. The data is mostly of insufficient quality (resolution or latency) for the demanding requirements of CBRN modelling for incident control. Future technologies and platforms will improve resolution and latency, making satellite data more viable in the CBRN management field


2021 ◽  
Vol 13 (10) ◽  
pp. 1877
Author(s):  
Ukkyo Jeong ◽  
Hyunkee Hong

Since April 2018, the TROPOspheric Monitoring Instrument (TROPOMI) has provided data on tropospheric NO2 column concentrations (CTROPOMI) with unprecedented spatial resolution. This study aims to assess the capability of TROPOMI to acquire high spatial resolution data regarding surface NO2 mixing ratios. In general, the instrument effectively detected major and moderate sources of NO2 over South Korea with a clear weekday–weekend distinction. We compared the CTROPOMI with surface NO2 mixing ratio measurements from an extensive ground-based network over South Korea operated by the Korean Ministry of Environment (SKME; more than 570 sites), for 2019. Spatiotemporally collocated CTROPOMI and SKME showed a moderate correlation (correlation coefficient, r = 0.67), whereas their annual mean values at each site showed a higher correlation (r = 0.84). The CTROPOMI and SKME were well correlated around the Seoul metropolitan area, where significant amounts of NO2 prevailed throughout the year, whereas they showed lower correlation at rural sites. We converted the tropospheric NO2 from TROPOMI to the surface mixing ratio (STROPOMI) using the EAC4 (ECMWF Atmospheric Composition Reanalysis 4) profile shape, for quantitative comparison with the SKME. The estimated STROPOMI generally underestimated the in-situ value obtained, SKME (slope = 0.64), as reported in previous studies.


2021 ◽  
Vol 13 (3) ◽  
pp. 434
Author(s):  
Ana del Águila ◽  
Dmitry S. Efremenko

Fast radiative transfer models (RTMs) are required to process a great amount of satellite-based atmospheric composition data. Specifically designed acceleration techniques can be incorporated in RTMs to simulate the reflected radiances with a fine spectral resolution, avoiding time-consuming computations on a fine resolution grid. In particular, in the cluster low-streams regression (CLSR) method, the computations on a fine resolution grid are performed by using the fast two-stream RTM, and then the spectra are corrected by using regression models between the two-stream and multi-stream RTMs. The performance enhancement due to such a scheme can be of about two orders of magnitude. In this paper, we consider a modification of the CLSR method (which is referred to as the double CLSR method), in which the single-scattering approximation is used for the computations on a fine resolution grid, while the two-stream spectra are computed by using the regression model between the two-stream RTM and the single-scattering approximation. Once the two-stream spectra are known, the CLSR method is applied the second time to restore the multi-stream spectra. Through a numerical analysis, it is shown that the double CLSR method yields an acceleration factor of about three orders of magnitude as compared to the reference multi-stream fine-resolution computations. The error of such an approach is below 0.05%. In addition, it is analysed how the CLSR method can be adopted for efficient computations for atmospheric scenarios containing aerosols. In particular, it is discussed how the precomputed data for clear sky conditions can be reused for computing the aerosol spectra in the framework of the CLSR method. The simulations are performed for the Hartley–Huggins, O2 A-, water vapour and CO2 weak absorption bands and five aerosol models from the optical properties of aerosols and clouds (OPAC) database.


2017 ◽  
Vol 10 (3) ◽  
pp. 989-997 ◽  
Author(s):  
Youwen Sun ◽  
Mathias Palm ◽  
Christine Weinzierl ◽  
Christof Petri ◽  
Justus Notholt ◽  
...  

Abstract. The TCCON (Total Carbon Column Observing Network) and most NDACC (Network for Detection of Atmospheric Composition Change) sites assume an ideal ILS (instrumental line shape) for analysis of the spectra. In order to adapt the radiant energy received by the detector, an attenuator or different sizes of field stop can be inserted in the light path. These processes may alter the alignment of a high-resolution FTIR (Fourier transform infrared) spectrometer, and may result in bias due to ILS drift. In this paper, we first investigated the sensitivity of the ILS monitoring with respect to application of different kinds of attenuators for ground-based high-resolution FTIR spectrometers within the TCCON and NDACC networks. Both lamp and sun cell measurements were conducted after the insertion of five different attenuators in front of and behind the interferometer. The ILS characteristics derived from lamp and sun spectra are in good agreement. ILSs deduced from all lamp cell measurements were compared. As a result, the disturbances to the ILS of a high-resolution FTIR spectrometer with respect to the insertion of different attenuators at different positions were quantified. A potential strategy to adapt the incident intensity of a detector was finally deduced.


2020 ◽  
Vol 20 (6) ◽  
pp. 3945-3963
Author(s):  
Frank Roux ◽  
Hannah Clark ◽  
Kuo-Ying Wang ◽  
Susanne Rohs ◽  
Bastien Sauvage ◽  
...  

Abstract. The research infrastructure IAGOS (In-Service Aircraft for a Global Observing System) equips commercial aircraft with instruments to monitor the composition of the atmosphere during flights around the world. In this article, we use data from two China Airlines aircraft based in Taipei (Taiwan) which provided daily measurements of ozone, carbon monoxide and water vapour throughout the summer of 2016. We present time series, from the surface to the upper troposphere, of ozone, carbon monoxide and relative humidity near Taipei, focusing on periods influenced by the passage of typhoons. We examine landing and take-off profiles in the vicinity of tropical cyclones using ERA-5 reanalyses to elucidate the origin of the anomalies in the vertical distribution of these chemical species. Results indicate a high ozone content in the upper- to middle-troposphere track of the storms. The high ozone mixing ratios are generally correlated with potential vorticity and anti-correlated with relative humidity, suggesting stratospheric origin. These results suggest that tropical cyclones participate in transporting air from the stratosphere to troposphere and that such transport could be a regular feature of typhoons. After the typhoons passed Taiwan, the tropospheric column was filled with substantially lower ozone mixing ratios due to the rapid uplift of marine boundary layer air. At the same time, the relative humidity increased, and carbon monoxide mixing ratios fell. Locally, therefore, the passage of typhoons has a positive effect on air quality at the surface, cleansing the atmosphere and reducing the mixing ratios of pollutants such as CO and O3.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 201 ◽  
Author(s):  
Yu Zou ◽  
Xue Jiao Deng ◽  
Tao Deng ◽  
Chang Qin Yin ◽  
Fei Li

Isoprene has a potentially large effect on ozone (O3) formation in the subtropical, highly polluted city of Guangzhou. Online measurements of isoprene in Guangzhou city are scarce; thus, isoprene levels were monitored for one year at the Guangzhou Panyu Atmospheric Composition Station (GPACS), a suburban site in Guangzhou, using an online gas chromatography-flame ionization detector (GC–FID) system to investigate the characterization and reactivity of isoprene and its effect on the O3 peak profile in different seasons. The results showed that the daily average mixing ratios of isoprene at GPACS were 0.40, 2.20, 1.40, and 0.13 mixing ratio by volume (ppbv) in spring, summer, autumn, and winter, respectively. These values were considerably higher than the mixing ratios of isoprene in the numerous other subtropical and temperate cities around the world. Furthermore, isoprene ranked first with regard to O3 formation potential (OFP) and propylene-equivalent mixing ratio among 56 measured non–methane hydrocarbons (NMHCs). The ratios of isoprene to cis-2-butene, an exhaust tracer, were determined to estimate the fractions of biogenic and anthropogenic emissions. The results revealed a much greater contribution from biogenic than anthropogenic factors during the daytime in all four seasons. In addition, night-time isoprene emissions were mostly associated with vehicles in winter, and the residual isoprene that remained after photochemical loss during the daytime also persisted into the night. The high levels of isoprene in summer and autumn may cause the strong and broad peaks of the O3 profile because of its association with the most favorable meteorological conditions (e.g., high temperature and intense solar radiation) and the highest OH mixing ratio, which could affect human health by exposing people to a high O3 mixing ratio for prolonged periods. The lower mixing ratios of isoprene resulted in a weak and sharp peak in the O3 profile in both spring and winter. The high level of isoprene in the subtropical zone could accentuate its large impact on atmospheric oxidant capacity and air quality in Guangzhou city.


Sign in / Sign up

Export Citation Format

Share Document